999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON THE NUCLEARITY OF COMPLETELY 1-SUMMING MAPPING SPACES*

2021-01-07 06:46:22ZheDONG

Zhe DONG (董 浙)

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China E-mail : dongzhe@zju.edu.cn Yafei ZHAO (趙亞菲)

Department of Mathematics, Zhejiang International Studies University, Hangzhou 310012, China E-mail : zhaoyafei zju@163.com

For the ordinary systems of mapping spaces,we can give the following definition:

Definition 1.3An operator spaceVis nuclear(in the system)if there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

As we know,mapping spaces provide a fundamental tool for studying Banach spaces and operator spaces.In this note,we are interested primarily in the nuclearity in the system of completely 1-summing mapping spaces(Π1(·,·),π1).To our surprise,we obtain that C is the unique operator space which is nuclear in the system(Π1(·,·),π1).

2 Nuclearity in(Π1(·,·),π1)

Definition 2.1An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the point-norm topology:

Lemma 2.2An operator spaceVis nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤1.

ProofSuppose thatVis nuclear in the system of(Π1(·,·),π1);it is clear thatVis nuclear.From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1,which approximately commute in the point-norm topology:

Corollary 13.4.2 in[5]implies thatν(ψα??α)≤π1(ψα)·π1(?α)≤1.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤1.Thusπ1(idV)≤ι(idV)≤1.

Conversely,suppose thatVis nuclear andπ1(idV)≤1.By the nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

Theorem 2.4An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if and only ifV=C.

ProofIt is clear,by the definition ofπ1in Section 1,thatπ1(idC)=1.Thus it follows from Definition 2.1 that C is nuclear in the system of(Π1(·,·),π1).

To prove the necessity of this,we suppose thatVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1).From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the pointnorm topology:

It follows from Lemma 2.2 thatπ1(idV)≤1.By Corollary 13.4.2 in[5]we have

ThusidVis completely nuclear.Proposition 12.2.1 in[5]shows thatidVis compact in the Banach space sense,and from classical theory,Vmust be finite dimensional,and soV=V??.By Lemma 2.2 and Theorem 14.6.7 in[5],V=V??is injective.Thus,by Corollary 6.1.8 in[5]we have

Sinceiis a complete isometry andPis a complete quotient mapping,i?is a complete quotient mapping andP?is a complete isometry.Thus it follows from(7.1.27)and Proposition 8.1.5 in[5]that the following embeddings are complete isometries:

3λ-Nuclearity in(Π1(·,·),π1)

Definition 3.1An operator spaceVisλ-nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

It is clear from Definition 2.1 and Definition 3.1 that nuclearity in(Π1(·,·),π1)is equivalent to 1-nuclearity in(Π1(·,·),π1).

Lemma 3.2An operator spaceVisλ-nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤λ.

ProofThe proof is similar to that of Lemma 2.2.Suppose thatVisλ-nuclear in the system of(Π1(·,·),π1);it follows from Definition 3.1 and Definition 1.3 thatVis nuclear and that there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

Thus we haveν(ψα??α)≤π1(ψα??α)≤‖ψα‖cb·π1(?α)≤λ.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤λ.Thusπ1(idV)≤ι(idV)≤λ.

Conversely,suppose thatVis nuclear andπ1(idV)≤λ.By nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

主站蜘蛛池模板: 欧美综合中文字幕久久| 性欧美久久| 亚洲性影院| 色偷偷一区二区三区| 大陆国产精品视频| 极品性荡少妇一区二区色欲 | 国产人成网线在线播放va| 国产精品人成在线播放| 欧美曰批视频免费播放免费| 亚洲无限乱码一二三四区| 国产美女一级毛片| 久久亚洲美女精品国产精品| 久久精品国产亚洲麻豆| 国产一级妓女av网站| 老司机精品久久| 国产日韩欧美在线视频免费观看| 色综合综合网| 日韩欧美综合在线制服| 91视频区| 亚洲国产天堂久久综合| 久久永久精品免费视频| 九色91在线视频| 亚洲国产成熟视频在线多多 | 国产微拍精品| 一级爱做片免费观看久久| av在线人妻熟妇| 新SSS无码手机在线观看| 亚洲最新网址| 热这里只有精品国产热门精品| 99re66精品视频在线观看| 亚洲日韩精品欧美中文字幕| 午夜国产精品视频黄 | 久久青草免费91观看| 日韩在线欧美在线| 日韩区欧美区| 久久无码av一区二区三区| 欧美在线一二区| 久久天天躁狠狠躁夜夜躁| 久久久精品无码一二三区| 一级毛片免费播放视频| 天堂亚洲网| 国产成人精品一区二区三区| 日本www在线视频| 亚洲日韩Av中文字幕无码| 国产在线啪| 成人日韩视频| 2021亚洲精品不卡a| 91精品久久久久久无码人妻| 久久福利网| 99re热精品视频国产免费| 欧美伦理一区| 99久久免费精品特色大片| 欧美成人影院亚洲综合图| 亚洲男人的天堂久久香蕉网| 亚洲欧美色中文字幕| 欧美激情福利| 国内精品视频在线| 白浆视频在线观看| 亚洲欧洲日韩国产综合在线二区| 亚洲综合日韩精品| 亚洲91精品视频| 久久精品亚洲中文字幕乱码| 国产97色在线| 久久a毛片| 亚洲色图另类| 污污网站在线观看| 国产大片黄在线观看| 国产视频自拍一区| 亚洲 日韩 激情 无码 中出| 国产欧美日韩精品第二区| 在线亚洲精品福利网址导航| 久久精品中文无码资源站| 99热这里只有精品2| 欧美日韩成人在线观看| 亚洲精品动漫| 国产欧美日韩视频一区二区三区| 亚洲人成网站在线播放2019| 日韩 欧美 小说 综合网 另类| 免费 国产 无码久久久| 在线五月婷婷| av在线5g无码天天| 5555国产在线观看|