999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

EXISTENCE AND UNIQUENESS OF THE POSITIVE STEADY STATE SOLUTION FOR A LTKA-VTE PEDPY MD WIH CING*

2021-01-07 06:46:18XianzhongZENG曾憲忠LingyuLIU劉玲妤WeiyuanXIE謝偉圓

?Xianzhong ZENG (曾憲忠)? Lingyu LIU (劉玲妤) Weiyuan XIE (謝偉圓)

School of Mathematics and Computing Science, Hunan University of Science and Technology,Xiangtan 411201, China E-mail : zxzh217@sohu.com; 591283884@qq.com; 2310945546@qq.com

In this paper,we study the following Lotka-Volterra predator-prey model with a crowding term in the predator equation:

This paper is organized as follows:in Section 2,we give some preliminaries;in Section 3,by employing the local and global bifurcation theories[6,8–10,21,33,43],we obtain the existence and the global structure of the positive steady state solutions of(1.3);in Section 4,by using the Lyapunov-Schmidt reduction,we obtain the fine profile of the uniqueness of the positive steady state solution of(1.3);in Section 5,we show that whenμ≥λD1(?0),the predator does not exist in?0and the prey is equal to zero in?0.

2 Preliminaries

As far as we know,Problems(2.3),(2.4)and(2.5)have been widely studied.Here,we mainly quote some results of[16,17,22,26,31].The readers can look at[3–5,16–18,22,25,26,31]and references therein for more research results.Now,we collect the results of the equations(2.3)–(2.5)in the Lemmas 2.1–2.3,where Part(ii)of Lemma 2.1 quotes a research result obtained by Professor Lopez-Gomez(see[22]or Theorem 6.1 of[26]),and other parts of Lemmas 2.1–2.3 quote some research results obtained by Professors Du and Huang[16,17],and Ouyang[31].In addition,it should be noted that Lemma 2.4 was obtained in[39].

3 Existence of the Positive Solutions of(2.2)

In this section,by employing the local and global bifurcation theories[6,8–10,21,33],we will obtain the existence of the positive solutions of(2.2).

3.1 Local bifurcation analysis

(iii)By a similar argument,(2.2)has no positive solution emanating from any point on Γ0for any fixedμ≠0.As forμ=0,by using the Lyapunov-Schmit reduction in Section 4 below,we obtain that the curve of the positive solutions of(2.2)may emanate from the point(0,0;λ)=(0,0;0).

By the arguments above,we obtain the following results:

Lemma 3.1Suppose thatμ,bandcare fixed.Then the following results hold:

3.2 Global bifurcation analysis

4 Uniqueness of the Positive Solution of(2.2)

In this section,we investigate the uniqueness of the positive solution of(2.2).Although we may obtain the uniqueness of the positive solution of(2.2)whenborcare near to zero by using the perturbation theory of the linearized operator,this result is not fine.In what follows,by using the Lyapunov-Schmit reduction,we will obtain the fine profile of the uniqueness of the positive solution of(2.2).One can look at[34,35,42]and references therein for discussion of some models using the Lyapunov-Schmidt reduction.

4.1 Lyapunov-Schmidt Reduction

whereX1andY1are theL2-orthogonal spaces ofR2inXandY,respectively.LetP:X→X1andQ:Y→Y1be the orthogonal projections.Then every solution(w,z)of(4.2)may be uniquely decomposed as

4.2 Structure of the solutions ofΦ0((r,s);α)=0

4.3 Construction of the positive solutions of(4.1)

In this subsection,by perturbing the solutions curve{((r,f(r));g(r))}ofΦ0((r,s);β)=0,we will construct the positive solutions of(4.1)forε>0 small enough,which yields a fine profile of the curve of the positive solutions of(2.2).In what follows,we only discuss the caseβ>0;as the caseβ≤0 is similar,we omit it.

Furthermore,by perturbing the set{((r,f(r));g(r)):0≤r≤C1},we may obtain the following proposition:

Proposition 4.4Assume thatβ>0 is fixed.LetC1andA1be defined in(4.10).Then there existε0>0 and a family of bounded smooth curves

5 Nonexistence of the Positive Solution of(2.2)

主站蜘蛛池模板: 日韩成人免费网站| 青青久视频| 日本欧美精品| 国产综合日韩另类一区二区| 大学生久久香蕉国产线观看 | 亚洲天堂视频在线观看免费| 91色在线观看| 伊人AV天堂| 亚洲91精品视频| 国产精品深爱在线| 一区二区三区高清视频国产女人| 亚洲 日韩 激情 无码 中出| jizz在线免费播放| 国产精品一区二区无码免费看片| 久久99精品久久久久久不卡| a毛片在线播放| 日韩国产欧美精品在线| 精品一区二区三区水蜜桃| 亚洲一区网站| 国产在线视频导航| 欧美日本在线| 欧美黄色a| 日韩精品一区二区三区免费在线观看| 亚洲精品视频免费看| 日本道综合一本久久久88| 亚洲日韩久久综合中文字幕| 999精品在线视频| 91精品国产自产在线观看| 91精品久久久久久无码人妻| 亚洲欧美成人综合| 亚国产欧美在线人成| 成人在线综合| 国产成人亚洲无吗淙合青草| 国产午夜不卡| 理论片一区| 亚洲精品卡2卡3卡4卡5卡区| 亚洲视频免费播放| 激情影院内射美女| 国产精品无码久久久久久| 久久综合丝袜日本网| 国产成人精品高清不卡在线| 最新国产你懂的在线网址| 美美女高清毛片视频免费观看| 高h视频在线| 国产三区二区| 国产一级片网址| 欧美日韩精品一区二区视频| 日韩成人高清无码| 91国内外精品自在线播放| 亚洲综合色婷婷中文字幕| 日本精品影院| 一本久道久久综合多人| 在线无码九区| 91久久大香线蕉| 婷婷丁香色| 99精品热视频这里只有精品7| 国产在线欧美| 午夜爽爽视频| 国产网站黄| 国产在线观看成人91| 99人体免费视频| 亚洲免费福利视频| 亚欧乱色视频网站大全| 国产91视频免费| 亚洲日韩Av中文字幕无码| 亚洲中文精品人人永久免费| 九色综合伊人久久富二代| 又黄又湿又爽的视频| 欧美成人在线免费| 亚洲另类国产欧美一区二区| 欧美性天天| 国产精品亚洲欧美日韩久久| 欧美中文字幕第一页线路一| 一本久道热中字伊人| 真人高潮娇喘嗯啊在线观看| 国产精品亚洲αv天堂无码| 天天综合网色| 九色91在线视频| 国产精品真实对白精彩久久| 精品成人一区二区| 九色视频线上播放| 国产精品福利尤物youwu |