999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTOL LOL

2021-01-07 06:44:22GongbaoLI李工寶TaoYANG楊濤

Gongbao LI(李工寶)? Tao YANG (楊濤)

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China E-mail : ligb@mail.ccnu.edu.cn; yangt@mails.ccnu.edu.cn

1 Introduction

In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:

The rest of the paper is organized as follows:in Section 2,we give some preliminaries.In Section 3,we introduce the weighted Morrey space and establish improved Sobolev inequalities,i.e.,we prove Proposition 1.3 and Corollary 1.4.In Section 4,we solve the minimization problems(1.12)–(1.13).In Section 5,we prove Theorem 1.1.

NotationWe use→and?to denote the strong and weak convergence in the corresponding spaces respectively.Write“Palais-Smale”as(PS)for short.N={1,2,···}is the set of natural numbers.R and C denote the sets of real and complex numbers respectively.By saying that a function is“measurable”,we always mean that the function is“Lebesgue”measurable.“∧”denotes the Fourier transform and“∨”denotes the inverse Fourier transform.Generic fixed and numerical constants will be denoted byC(with subscript in some case),and they will be allowed to vary within a single line or formula.

2 Preliminaries

In this section,we give some preliminary results.

Lemma 2.1(fractional Hardy inequality:Formula(2.1)in[26])Lets∈(0,1)andn>2s.Then we have

3 Proof of Proposition 1.3 and Corollary 1.4

In this section,we give some basic properties of a weighted Morrey space and then prove Proposition 1.3 and Corollary 1.4.

The Morrey spaces were introduced by Morrey in 1938[30]to investigate the local behavior of solutions to some partial differential equations.Nowadays the Morrey spaces are extended to more general cases(see[1,31,32]).Lettingp∈[1,+∞)andγ∈(0,n),the usual homogeneous Morrey space

4 Solving the Minimization Problems(1.12)–(1.13)

Thus we have that?v 6≡0.The rest is the sameas the proof of Proposition 4.1-(1),so Proposition 4.1-(2)holds.

(3)The proof is similar to Proposition 4.1-(1).Although Proposition 4.1-(3)has been proved in[2],the strategy we adopted in Proposition 4.1-(1)is more direct and effective.

(4) Imitate the proof of Proposition 4.1-(2). ?

Remark4.3To prove Proposition 4.1-(2),firstly we choose aminimizing sequence{uk}of Sμ(n,s,γ,0),then we prove that vk=|uk|?is also aminimizing sequence of Sμ(n,s,γ,0),since 0≤γ<γH.Since vkis radial symmetric and decreasing,we can easily eliminate vanishing.If α>0 and 0≤γ<γH,the same strategy can be applied to the proof of Proposition 4.1-(1).W hen it comes to α>0 and γ<0,we fail to prove that vk=|uk|?is a minimizing sequence of Sμ(n,s,γ,α),but(1.9)and(1.10)are very effective in this situation.

5 Proof of Theorem 1.1

We shall now use the minimizers of Sμ(n,s,γ,α)and Λ(n,s,γ,β)obtained in Proposition 4.1 to prove the existence of a nontrivial weak solution for equation(1.1).Recall that the energy functional associated to(1.1)is

Note that a nontrivial critical point of I is a nontrivial weak solution to equation(1.1).

Lemma5.1(Mountain Pass Lemma,[37])Let(E,||·||)be a Banach space and let I∈C1(E,R)such that the following conditions are satisfied:

(1)I(0)=0;

(2)There exist ρ,r>0 such that I(u)≥ρ for all u∈E with||u||=r;

Hencevis a nontrivial weak solution of(1.1).

(II)If is the case thats∈(0,1),0≤α,β<2s

Case(i)α=0<β<2sorβ=0<α<2s.

In this case,the embeddings(1.9)and inequality(1.10)are still effective.Sinceα>0 orβ>0,we get a nontrivial weak solution to(1.1),as above,by using(1.9),(1.10)and Proposition 5.3.

Case(ii)α=0 andβ=0.

In this case,(1.9)and(1.10)are useless.Since the limit equation for(1.1)is

by using the Nehari manifold method in[5],we can also get a non-trivial weak solution to(1.1),if 0≤γ<γH.

Remark 5.4The method we adopt to prove Theorem 1.1 can be applied to prove a similar existence result for thep-Laplace type problem involving double critical exponents.To go further,we consider

We say thatu∈D1,p(Rn)is a weak solution to(5.12)if

for anyφ∈D1,p(Rn).The following main result holds:

Theorem 5.5The problem(5.12)possesses at least a nontrivial weak solution provided that either

(I)n≥2,p∈(1,n),0<α1,α2

(II)n≥2,p∈(1,n),0≤α1,α2

主站蜘蛛池模板: 黄片在线永久| 国产69精品久久久久妇女| 日韩精品高清自在线| 国产综合精品一区二区| 国产成人综合亚洲网址| 欧美α片免费观看| 人妻无码AⅤ中文字| 伊人大杳蕉中文无码| 91精品情国产情侣高潮对白蜜| 人妻中文久热无码丝袜| 男女男免费视频网站国产| 四虎综合网| 成人在线综合| 黄色网页在线播放| 成人福利在线观看| 久久综合干| 91小视频在线观看| 国产欧美日韩在线在线不卡视频| 老熟妇喷水一区二区三区| 国产69精品久久久久孕妇大杂乱| 伊人久久影视| 亚洲欧美日韩久久精品| 91青青草视频在线观看的| 久久久久亚洲Av片无码观看| 午夜三级在线| 波多野结衣亚洲一区| 久久夜色撩人精品国产| 欧洲免费精品视频在线| 国产精品免费p区| 九色视频一区| 久久大香香蕉国产免费网站| 精品国产成人a在线观看| 影音先锋亚洲无码| 亚洲天堂网站在线| 亚洲成人在线免费观看| 日韩美女福利视频| 在线观看无码a∨| 国产丰满成熟女性性满足视频| 日韩精品资源| 欧美国产在线看| 亚洲AV无码精品无码久久蜜桃| 色婷婷狠狠干| 男女男精品视频| 国产91丝袜在线播放动漫| 黄色网在线| AV无码无在线观看免费| 亚洲制服丝袜第一页| 日韩中文精品亚洲第三区| 一级看片免费视频| 在线国产资源| 国产乱子伦无码精品小说| 91青青草视频| 亚洲香蕉在线| 亚洲第一中文字幕| 亚洲三级成人| 动漫精品中文字幕无码| 黑色丝袜高跟国产在线91| 久久综合五月| 日本免费一级视频| 欧美日韩精品一区二区视频| 强奷白丝美女在线观看| 亚洲水蜜桃久久综合网站| 国产精品yjizz视频网一二区| 尤物精品国产福利网站| 国产欧美精品一区二区| 天堂av高清一区二区三区| 免费一级毛片在线播放傲雪网| 强乱中文字幕在线播放不卡| 九色视频一区| 一级毛片不卡片免费观看| 精品国产美女福到在线不卡f| 欧美午夜视频| 91人妻日韩人妻无码专区精品| 亚洲首页国产精品丝袜| 五月丁香伊人啪啪手机免费观看| 亚洲色大成网站www国产| 四虎亚洲精品| 国产导航在线| 国产成人麻豆精品| 国产人成午夜免费看| 热99精品视频| 亚洲无码37.|