999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON VORTEX ALIGNMENT AND THE BOUNDEDNESS OF TH Lq-NORM OF VIRUICITY IN INCOMPRESSBLE VU FUD*

2021-01-07 06:42:52SiranLI李思然

Siran LI(李思然)

Department of Mathematics, Rice University,MS 136 P.O. Box 1892,Houston, Texas,77251,USA

Current Address:Department of Mathematics,New York University-Sganghai,office 1146,1555 Century Avenue,Pudong,Shanghai 200122,China E-mail:siran.Li@rice.edu

where S is the 3×3 matrix

The alignment of the vorticity is closely related to the regularity of weak solutions to the Navier–Stokes equations.A celebrated result by Constantin–Fefferman[10]shows that,if the vorticity direction does not change too rapidly in the regions with high vorticity magnitude,then a weak solution is automatically strong.More precisely,denote

and if there are constantsΛandρ>0 such that

whenever|ω(t,x)|,|ω(t,y)|≥Λ,then a weak solutionuon[0,T]must be a classical solution on[0,T].Here,weak solutions are defined in the Leray–Hopf sense:u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3))with the energy inequality

Throughout the paper,? without subscripts denotes integration over R3,and‖·‖Lq≡‖·‖Lq(R3).The above result of Constantin–Fefferman[10]is established by showing that

which,together with eq.(1.2),implies thatuis classical.Using more refined estimates,in[1],Beir?ao da Veiga–Berselli improved the Lipschitz condition(1.7)to a H¨older condition:

The H¨older exponentβ=1/2 is the best to date.There is extensive literature on the geometric regularity conditions`a la Constantin–Fefferman;see Beir?ao da Veiga–Berselli[1,2],Beir?ao da Veiga[4–6],Berselli[7],Chae[8],Chae–Kang–Li[9],Giga–Miura[14],Gruji′c[15],Vasseur[23],and Zhou[24],as well as the references cited therein.Similar conditions for the Euler equations have also been studied;cf.Constantin–Fefferman–Majda[11].

In this paper we establish a variant of the above results in[1,10].In contrast to eq.(1.9),which concerns the growth of theL2-norm of vorticityω,we study the growth of theLq-norm ofωunder assumptions of the form eq.(1.10),for which the H¨older exponent depends onqonly.

The main result of the paper is as follows:

Theorem 1.1Letu:R3×[0,T]→R3be a weak solution to eqs.(1.1)–(1.3).Assume that forq>5/3 there existΛandρ>0 such that

whenever|ω(t,x)|,|ω(t,y)|≥Λ;the angle?is as in eq.(1.6).In addition,suppose thatω∈Lq(R3×[0,T]).Then

In particular,forq=2,β=1,Theorem 1.1 recovers the result by Constantin–Fefferman[10];and forq=2,β=1/2,the result by Beir?ao da Veiga–Berselli[1].Indeed,whenq=2,the assumptionω∈Lq(R3×[0,T])is automatically verified by the energy inequality(1.8).This result is consistent with the classical Prodi–Serrin regularity criterion(see[19,21]).

Theorem 1.1 provides a new characterisation for the control of vorticity under suitable alignment of the vortex structures in 3D incompressible fluids.Roughly speaking,it suggests a self-improvement property from the average-in-time bound for the(spatial)Lq-norm ofωto the uniform-in-time bound,provided that the vorticity does not change its direction too rapidly wherever its magnitude is large.

2 Preliminary Identities and Estimates

In this section we summarise several identities and inequalities that shall be used in the subsequent developments.

First of all,we recall the singular integral representation of the rate-of-strain tensor S in terms ofω,which is crucial to the arguments in Constantin–Fefferman[10].Denotinga:=a/|a|for three-vectorsa∈R3,it holds(eq.(4)in[10])that

The symbol p.v.denotes the principal value.Then the vortex stretching term S:(ω?ω)can be expressed as

where

andeiare arbitrary three-vectors(column vectors)fori=1,2,3.As shown on pp.778–780 in[10],the bound for angle?can be translated to a bound for the geometrical termD:

Lemma 2.1Under the assumptions of Theorem 1.1,we have

Next,the time-evolution of theLq-norm ofω(for anyq≥1)has been derived by Qian in[20],which is as follows.See the proof of Lemma 2 in[20].

Lemma 2.2Letube a weak solution to eqs.(1.1)–(1.3).Then,forq≥1,it holds that

Finally,in Section 3,we shall make crucial use of the Hardy–Littlewood–Sobolev interpolation inequality(cf.p106,Lieb–Loss[17]),withn=3 andλ=2+δ.

Lemma 2.3Let 1

3 Proof of Theorem 1.1

Equipped with Lemmas 2.1–2.3 above,we are ready to prove Theorem 1.1.

As in Constantin–Fefferman[10],let us decompose the vorticity into“big”and“small”parts with respect to the(large)constantΛ>0 in Theorem 1.1.To this end,takingχ∈C∞([0,∞[),0≤χ≤1,χ≡1 on[0,1],andχ≡0 on[2,∞[,we define

Putting together Cases 1 and 2 and using that 3?β=λ+2,we now complete the proof.

AcknowledgementsThe author is indebted to Professor Zhongmin Qian for many insightful discussions and generous sharing of ideas,to Professor Gui-Qiang Chen for his lasting support,and to Professor Zoran Gruji′c for communicating with us about the paper[16].Part of this work was done during SL’s stay as a CRM–ISM postdoctoral fellow at the Centre de Recherches Math′ematiques,Universit′e de Montr′eal,and the Institut des Sciences Math′ematiques.The author would like to thank these institutions for their hospitality.

主站蜘蛛池模板: 亚洲天堂网在线观看视频| 久久久久久尹人网香蕉 | 日韩一区二区在线电影| 国产成人无码AV在线播放动漫| 欧美一级大片在线观看| 四虎国产在线观看| a毛片在线| 国产美女精品人人做人人爽| 成人欧美日韩| 国产永久在线视频| 男女男精品视频| 午夜毛片免费观看视频 | 国产日韩av在线播放| 国产污视频在线观看| 亚洲国产综合精品中文第一| 国产福利微拍精品一区二区| 国产肉感大码AV无码| 2022国产无码在线| 久久久久久午夜精品| 亚洲视屏在线观看| 久久久精品国产SM调教网站| 又黄又湿又爽的视频| 成人国产一区二区三区| 免费观看国产小粉嫩喷水| 91口爆吞精国产对白第三集| 午夜老司机永久免费看片| 国产精品刺激对白在线| 亚洲人成日本在线观看| 中文字幕欧美日韩| 人妻出轨无码中文一区二区| 国产不卡在线看| a级高清毛片| 91色在线观看| 亚洲一区第一页| 蜜臀AVWWW国产天堂| 国产精品区视频中文字幕| 精品三级网站| 欧美一级一级做性视频| 无码综合天天久久综合网| 一级毛片在线免费视频| 精品无码人妻一区二区| 伊人久久精品无码麻豆精品 | 国产免费黄| 很黄的网站在线观看| 欧美在线视频不卡| 国产午夜人做人免费视频| 3344在线观看无码| 亚洲色偷偷偷鲁综合| 久久国产亚洲偷自| 国产一级毛片在线| 亚洲网综合| 亚洲国产综合精品中文第一| 国产91全国探花系列在线播放| 欧美视频在线播放观看免费福利资源| 国产成人亚洲毛片| 88av在线| 无码免费视频| 欧美激情视频一区| 欧美国产日韩一区二区三区精品影视| 国产精品亚洲va在线观看| 久久人妻xunleige无码| 好吊妞欧美视频免费| 亚洲无限乱码| 成人在线综合| 国产成人精品亚洲日本对白优播| 中字无码精油按摩中出视频| 久久成人国产精品免费软件| 伊人久久青草青青综合| 国产精品欧美在线观看| 美女国内精品自产拍在线播放| a级毛片免费看| 亚洲三级片在线看| 国产成人久久综合777777麻豆 | 在线va视频| 2019国产在线| 欧美全免费aaaaaa特黄在线| 日本色综合网| 国产成人精彩在线视频50| 亚洲人成人无码www| 欧美中文字幕一区二区三区| 久久国产香蕉| 精品无码一区二区在线观看|