999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON REFINEMENT OF THE COEFFICIENT INEQUALITIES FOR A SUBCLASS OF QUASI-CONVEX MPPG RL L RB*

2021-01-07 06:42:14QinghuaXU徐慶華YuanpingLAI賴元平

Qinghua XU(徐慶華) Yuanping LAI(賴元平)

School of Science,Zhejiang University of Science and Technology,Hangzhou 310023,China E-mail:xuqh@mail.ustc.edu.cn;lyp@163.com

For eachx∈X{0},we define

According to the Hahn-Banach theorem,T(x)is nonempty.

In[3],Fekete and Szeg¨o obtained the following classical result:

Let the functionf(z)be defined by(1.1).Iff∈S,then

forλ∈[0,1].The above inequality is known as the Fekete and Szeg¨o inequality.After the appearance of this,there were many papers considering the corresponding problems for various subclasses of the class S,and many interesting results were obtained.For example,in[14],Keogh and Merkes obtained the following result for K:

Theorem A([14])Let the functionf(z)be defined by(1.1).Iff∈K,then

The above estimation is sharp for the function

Although the Fekete and Szeg¨o inequalities for various subclasses of the class S have been established,only a few results are known for the inequalities of homogeneous expansions for subclasses of biholomorphic mappings in several complex variables.Some best-possible results concerning the coefficient estimates for subclasses of holomorphic mappings in several variables were obtained in the works of Bracci et al.([1,2]),Graham et al.([4,6–9]),Hamada et al.([10–12]),Kohr([13]),Liu and Liu([19]),and Xu et al.([20,21]).

In[22],using a restrictive assumption,Xu and Liu established the coefficient inequality for a class of starlike mappings defined on the unit ball in a complex Banach space or on the unit polydisk in Cn,which is the first Fekete and Szeg¨o inequality in several complex variables.After this,the Fekete and Szeg¨o inequalities were established for well-known subclasses of biholomorphic mappings in several complex variables(see[24–27]).

In this article,we generalize Theorem A and obtain the Fekete and Szeg¨o inequality for a normalized convex functionfon U such thatf(z)?zhas a zero of orderk+1 atz=0,and then we extend this result to a subclass of quasi-convex mappings defined on the unit ball in a complex Banach space and the unit polydisk in Cn,respectively.The results presented here generalize the corresponding results of[23].

LetH(E)denote the set of all holomorphic mappings fromEintoX.It is well known that iff∈H(E),then

for allyin some neighborhood ofx∈E,whereDnf(x)is then-th-Fr′echet derivative offatE,forn≥1,

Furthermore,Dnf(x)is a bounded symmetricn-linear mapping fromintoX.

A holomorphic mappingf:E→Xis said to be biholomorphic if the inversef?1exists and is holomorphic on the open setf(E).A mappingf∈H(E)is said to be locally biholomorphic if the Fr′echet derivativeDf(x)has a bounded inverse for eachx∈E.Iff:E→Xis a holomorphic mapping,thenfis said to be normalized iff(0)=0 andDf(0)=I,whereIrepresents the linear identity operator fromXintoX.

Suppose that ??Cnis a bounded circular domain.The first Fr′echet derivative and them(m≥2)-th Fr′echet derivative of a mappingf∈H(?)at a pointz∈?are written byDf(z),Dmf(z)(am?1,.),respectively.The matrix representations are

wheref(z)=(f1(z),f2(z),···,fn(z))′,a=(a1,a2,···,an)′∈Cn.

First,we recall the following definitions:

Definition 1.1([16])Letf:E→Xbe a normalized locally biholomorphic mapping.For allu∈?E,Tu∈T(u),α,β∈U,denote by

If

thenfis called a quasi-convex mapping of type A onE.

LetQA(E)denote the class of quasi-convex mappings of type A onE.

Definition 1.2([16])Letf:E→Xbe a normalized locally biholomorphic mapping.If

thenfis said to be a quasi-convex mapping of type B onE.

LetQB(E)denote the class of quasi-convex mappings of type B onE.

Definition 1.3([28])Letf:E→Xbe a normalized locally biholomorphic mapping.If

thenfis said to be a quasi-convex mapping of type C onE.

LetQC(E)denote the class of quasi-convex mappings of type C onE.

Remark 1.4([28])In[28],it was proved thatQA(E)=QC(E)?QB(E).WhenX=C,E=U,we deduce easily thatQA(U)=QB(U)=QC(U)=K.

Definition 1.5([17])Suppose that?is a domain(connected open set)inXwhich contains 0,andf:?→Xis a holomorphic mapping.We say thatx=0 is the zero of orderkoff(x)iff(0)=0,···,Dk?1f(0)=0,butDkf(0)≠0,wherek∈N.

2 Some Lemmas

In order to prove the desired results,we need to provide the following lemmas:

Lemma 2.1([5])Ifg(ξ)=b0+b1ξ+···+bnξn+···is holomorphic on U and|g(ξ)|<1 on U,then

3 Main Results

Now,we state and prove the main results of our present investigation.

From(3.15),together with(3.16),we deduce(3.3),as desired.

To see that the estimation of Theorem 3.3 is sharp,it suffices to consider the following example:as desired.

In order to prove the sharpness,it suffices to consider the following examples:

It is not difficult to check that the mappingsF,defined in(3.25)and(3.26),are in theQB(Un),and thatz=0 is the zero of orderk+1 ofF(z)?z.Takingz=(r,0,···,0)′(0

Remark 3.6Whenn=1,andk=1,Theorem 3.5 reduces to Theorem A.

Remark 3.7Theorems 3.3 and 3.5 generalize the corresponding results of[23].For whenk=1,Theorems 3.3 and 3.5 were obtained by Xu et al.[23].

主站蜘蛛池模板: 国产a网站| 久久综合婷婷| 在线观看欧美精品二区| 国产jizzjizz视频| 91视频99| 97国产成人无码精品久久久| 国产a v无码专区亚洲av| 热久久这里是精品6免费观看| 欧美黄色a| 国产本道久久一区二区三区| 91av成人日本不卡三区| 国产一区二区三区在线观看视频 | 国内精品免费| 情侣午夜国产在线一区无码| 激情无码字幕综合| 亚洲日本精品一区二区| 亚洲一区二区三区中文字幕5566| 亚洲欧美自拍一区| 欧美、日韩、国产综合一区| 毛片免费视频| 国产国产人在线成免费视频狼人色| 国产精品9| а∨天堂一区中文字幕| 丰满的少妇人妻无码区| www.91中文字幕| 沈阳少妇高潮在线| 日韩成人午夜| 国产一二三区视频| 色老头综合网| 国产成人超碰无码| 亚洲性影院| 高清码无在线看| 国产免费久久精品99re丫丫一 | 九九视频免费看| 久久午夜夜伦鲁鲁片不卡| 亚洲第一成年网| 国产在线小视频| 亚洲三级成人| 国产成人免费| 国产精品亚洲天堂| 97综合久久| 五月婷婷精品| 免费一级毛片完整版在线看| 亚洲男人的天堂在线观看| 欧美黄色网站在线看| 热九九精品| 99精品视频在线观看免费播放| 全部毛片免费看| 夜夜操国产| 伊在人亚洲香蕉精品播放| 色网站免费在线观看| 亚洲视频一区| 国产一级毛片网站| 亚洲国产一区在线观看| 99这里只有精品免费视频| 中文无码日韩精品| 亚洲高清国产拍精品26u| 欧美激情,国产精品| 欧美一级特黄aaaaaa在线看片| 怡红院美国分院一区二区| 日韩黄色大片免费看| 久久精品无码一区二区日韩免费| 大香伊人久久| 欧美激情第一欧美在线| 91在线视频福利| 中文字幕中文字字幕码一二区| 99久久精品免费看国产电影| 国产剧情国内精品原创| 亚洲a级毛片| 国产精品jizz在线观看软件| 青青草国产免费国产| 精品福利视频导航| 国产一级二级在线观看| 亚洲精品黄| 五月婷婷欧美| 国产91丝袜| 91精品国产麻豆国产自产在线| 狂欢视频在线观看不卡| 五月激情综合网| 高潮爽到爆的喷水女主播视频 | 久久狠狠色噜噜狠狠狠狠97视色| 人人91人人澡人人妻人人爽|