999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A note on the length of conjugacy classes of finite group

2020-12-07 12:52:34XUXiangyangLIYangming
浙江大學學報(理學版) 2020年6期

XU Xiangyang ,LI Yangming

(1.Department of Mathmetics and Computer Science,Nanchang Normal University,Nanchang 330032,China;2.Department of Mathmetics,Guangdong University of Education,Guangzhou 510310,China)

Abstract:Let a finite group G=AB be the product of the mutually permutable subgroups A and B.We give the structure of G by some conditions on the length of conjugacy classes of elements in A ∪B.Some recent results are extended.

Key Words:mutually permutable product;the length of conjugacy class;p-nilpotent group

0 Introduction

All groups considered in this paper are finite.For an elementxinG,xGdenotes the conjugacy class containingx,and |xG|denotes the length ofxG,that is,the number of elements inxG,we know that|xG|=[G:CG(x)].Furthermore,for any subgroupHofG,xH={xh|h∈H} and |xH|=[H:CH(x)].π(G)denotes the set of prime divisors of |G|,andGpdenotes a Sylowp-subgroup ofG,wherep∈π(G).For an integern,npdenotes the maximalp-power divisor ofn.

The productG=ABof the subgroupsAandBis called a mutually permutable product,ifUB=BUandAV=VAis true for allU≤AandV≤B.The influence of the factors of a mutually permutable product on the structure of the whole group has been extensively investigated in recent years.A detailed collection of such results is given in the book [1].Another interesting question that has also been extensively studied is what we can be said about the structure of groupG,if some arithmetic information is known aboutxGfor some elementsx∈G.There are many papers published recently in literature to answer the question,we mention some of them.By using classification theorem of finite simple groups,CHILLAG et al[2]proved the following results.

Theorem 1([1],proposition 5) LetGbe a group.Ifp=2 andp2does not divide |xG| for anyx∈G,thenGis soluble.

Without using classification theorem of finite simple groups,COSSEY et al[3]generalized the above result.

Theorem 2([2],theorem 1) LetGbe a group andpbe a fixed prime with (p-1,|G|)=1.p2does not divide |xG| for anyx∈G,thenGis a solublepnilpotent group with

LIU et al[4]generalized theorem 2 and got the following results.

Theorem 3([4],theorem 6) LetGbe a group andpbe a fixed prime with (p-1,|G|)=1.Suppose that for everyp'-elementxofG,p2does not divide |xG|.ThenGis a solublep-nilpotent group with

QIAN et al[5]went further to obtain the following result.

Theorem 4([4],theorem A) LetGbe a group andpbe a fixed prime integer such that (p-1,|G|)=1.Suppose that for everyp'-elementxof prime power order inG,p2does not divide |xG|.ThenGis solublepnilpotent,and a Sylowp-subgroup ofG/[Op(G)] is elementary Abelian.

In paper [6],there is an idea to investigate the structure of the mutually permutable productG=ABby giving some conditions on the lengths of conjugacy classes of elements inA∪B,FELIPE,et al[7]followed the way to extend theorem 4.Here we apply different method from [7] to obtain the following result.

Theorem 5LetGbe a group andpbe a fixed prime integer such that (p-1,|G|)=1.Suppose thatG=ABis a mutually permutable product of two subgroupsAandBofG.Suppose that for everyp'-elementxof prime power order inA∪B,p2does not divide |xG|.ThenGis solublep-nilpotent,and a Sylowp-subgroup ofG/[Op(G)]is elementary Abelian.

The following example indicates that theorem 5 extends theorem 4 properly.

Example 1Suppose thatH=〈a,b|a2=b3=1,ba=b-1〉 is a symmetric group of degree 3 andH'=〈a',b'〉 is a copy ofH.DenoteG=H×H'.ThenGsatisfies the hypotheses in theorem 5,wherep=2.Therefore,Gis 2-nilpotent.ButGdoes not satisfy the hypotheses in theorem 4 as 4 divides|(bb')G|.We can not apply theorem 4 to conclude thatGis 2-nilpotent.

1 Lemmas

The proofs in this note rely heavily on results from the book [1].It is one of the best ways to open the book in front of the reader.For the convenience of the difficulty to access to this book,we state the results in this book that we are using.

Lemma 1([1],lemma 4.1.10) Assume thatG=ABis a mutually permutable product of two subgroupsAandBofGand thatNis a normal subgroup ofG.ThenG/Nis a mutually permutable product ofAN/NandBN/N.

Lemma 2([1],lemma 4.3.8) Assume that the groupGis a mutually permutable product of the subgroupsAandB,and thatNis a non-Abelian minimal normal subgroup ofG.Then eitherN≤AorN≤B.

Lemma 3([1],theorem 4.3.11) Assume that the groupGis a mutually permutable product of the subgroupsAandB.ThenAG BGis non-trivial.

Lemma 4([8],lemma 13.6) Suppose thatH/Kis a solublep-chief factor ofG.Then

Lemma 5([8],proposition 12.5) Suppose thatQis a π'-group of operators for a Abelian π-group.ThenP=[P,Q] ×CP(Q).

Lemma 6([8],theorem 8.3) Suppose thatGis a nilpotent group andNis a non-trivial normal subgroup ofG.ThenZ(G) ∩Z≠1.

The following facts are well known and we will use them without further reference.

(1) IfNis a subnormal subgroup ofG,then|xN|||xG|for anyx∈G;

(2) Ifx∈GandNis normal inG,then

(3) LetNbe a normal subgroup ofGandpbe a prime.IfxNis ap-element ofG/N,then there is ap-elementx1ofGsuch thatxN=x1N.

2 Proof of theorem 5

We firstly prove thatGis solublep-nilpotent.Assume that it is false and chooseGto be a counter example of minimal order.We will reach a contradiction in several steps.

Step 1Ghas an unique minimal normal subgroup,Nsay,andG/Nis solublep-nilpotent,andΦ(G)=1.

Pick a minimal normal subgroup ofG,Nsay.

By lemma 1,the hypotheses are inherited into quotient groups.HenceG/Nis soluble andp-nilpotent by the minimal choice ofG.This implies thatNis the unique minimal normal subgroup ofG.

IfΦ(G) ≠1,then we haveN≤Φ(G).And then we haveGis solublep-nilpotent,a contradiction.

Step 2Gis soluble.HenceNis an elementary Abelianp-group.Furthermore,Nis complemented inG,byHsay,andCG(N)=N.

Assume thatNis non-Abelian.Then,by lemma 2,we haveN≤AorN≤B.SoNsatisfies the hypotheses of theorem 4.ThusNis soluble,a contradiction.ThusNis an elementary Abelianp-group andGis soluble.

SinceN?Φ(G)=1,there exists a maximal subgroup ofG,Hsay,such thatG=NH.SinceN∩His normal inG,we haveN∩H=1,i.e.,Nis complemented inGbyH.

SinceCH(N)is normal inG,we haveCH(N)=1.ThenCG(N)=NCH(N)=N.

Hence step 2 holds.

Step 3Pick a minimal normal subgroupMofH.We can assume thatMN≤ANandM≤Agfor someg∈G.

We haveMN/Nis a minimal normal subgroup ofG/N=G/CG(N).SoMN/N?Mis an elementary Abelianq-group by lemma 4,whereqis a prime distinct withp.By lemma 1,G/Nis a mutually permutable product ofAN/NandBN/N.So we can assume thatMN/≤AN/Nby lemma 3.

SinceNis ap-group,the Sylowq-subgroupAqofAis a Sylowq-subgroup ofAN.HenceM≤Agfor someg∈Gby the famous Sylow theorem.

Step 4The final contradiction.Pick a non-trivial elementm∈M.RegardNas an 〈m〉-module.By Maschke theorem ([8],theorem A.11.4),we can write

whereNiis an irreducible 〈m〉-module fori=1,2,…,t.Since (p-1,|G|)=1,we have thatq?p-1.Then |Ni|≥p2for anyiby [8],theorem B.9.8 (d).

By step 2,m?CG(N)=N.Hence there exists at least oneNisuch thatmdoes not centralize it,N1say.Hence [m,N1]=N1.SoCN1(m)=1 by lemma 5.This implies that |mN1|=[N1:CN1(m)|=|N1|≥p2.Sop2||mN1|.Thenp2||mG|.

By step 3,some conjugatexofmis inA.Hence we have |xG|=|mG|andp2||xG|,the final contradiction.

HenceGis soluble andp-nilpotent.

LetGpbe a Sylowp-subgroup ofG.We show thatGp/Op(G) is elementary Abelian.By standard arguments and induction,we can assume thatOp(G)=1 andΦ(G)=1.

By lemma 3,we pick a minimal normal subgroupLofGcontained inAorB.ThenLis an elementary Abelianq-group,whereqis a prime distinct withp,andLis complemented inGasL?Φ(G)=1.We may writeG=LMandN?L∩M=1.By lemma 1 and induction,we haveMp/Op(M)is elementary Abelian.

IfOp(M)=1,then by inductionMp=Gpis elementary Abelian,as wanted.Thus assume thatOp(M) ≥1.

Pick a non-trivial elementxinL.Noticing that|xG|=[G:CG(x)| is not divisible byp2by hypotheses,CMp(x) contains a maximal subgroup ofMp.In particular,CMp(x) is normal inMp.HenceCMp(x)∩Mpis normal inMp.IfCMp(x)∩Mp≠1,thenOp(M) ∩CMp(x)∩Z(Mp) ≠1 by lemma 6.LetZbe a minimal subgroup ofOp(M) ∩CMp(x)∩Z(Mp).SinceMisp-nilpotent,Op(M)∩Z(Mp)≤Z(M).ThusZ≤Z(M).SinceG=LM,CL(Z) is normal inG.ThenCL(Z)=1 orCL(Z)=Lby the minimality ofL.IfCL(Z)=L,thenZ≤Z(G) andZ≤Op(G)=1,a contradiction.HenceCL(Z)=1.This implies thatxdoes not centralizeZ.HenceZ?CMp(x),contrary to the choice ofZ.HenceCMp(x)∩Op(M)=1.ThenMp=CMp(x)Op(M)=CMp(x)×Op(M).This also means thatCMp(x) is a maximal subgroup ofMpandOp(M) is of orderp.Since

CMp(x) is elementary Abelian.Then we have thatMp=CMp(x) ×Op(M)is elementary Abelian.

This completes the proof of the theorem.

主站蜘蛛池模板: 22sihu国产精品视频影视资讯| 热伊人99re久久精品最新地| 欧美一区二区三区不卡免费| 亚洲一区免费看| 二级毛片免费观看全程| 91精品专区| 99视频有精品视频免费观看| 黄色三级毛片网站| 久久久久中文字幕精品视频| 中文字幕久久波多野结衣| 久久一级电影| www.精品视频| 国产精品自在线天天看片| 久久99国产综合精品1| 国产av无码日韩av无码网站| 国产手机在线观看| 亚洲精品无码AV电影在线播放| 国产欧美日韩视频怡春院| 99在线国产| 国产精品大白天新婚身材| 香港一级毛片免费看| 国产91精选在线观看| 久久先锋资源| 日本不卡在线播放| 色综合五月| 国产欧美高清| 国产极品美女在线| 91小视频版在线观看www| 国内精品自在自线视频香蕉| 国产欧美日韩在线在线不卡视频| 欧美劲爆第一页| 亚洲综合在线网| 欧美啪啪网| 全部免费毛片免费播放| 亚洲高清无码久久久| 亚洲成年人片| 欧美第一页在线| 日韩在线成年视频人网站观看| 99无码熟妇丰满人妻啪啪 | 国产区在线观看视频| 天天躁夜夜躁狠狠躁图片| 91无码国产视频| 国产成人a在线观看视频| 无码人妻热线精品视频| 尤物成AV人片在线观看| 999精品在线视频| 久久精品无码一区二区日韩免费| AV无码无在线观看免费| 热热久久狠狠偷偷色男同| 中文字幕无码av专区久久| 亚洲大学生视频在线播放| 中字无码精油按摩中出视频| 熟妇丰满人妻| 日韩精品成人网页视频在线| 国产黑丝视频在线观看| 91尤物国产尤物福利在线| 欧美在线天堂| 欧美精品在线观看视频| 国产精品久久久久久影院| 婷婷丁香在线观看| 国产激情无码一区二区APP | 在线观看热码亚洲av每日更新| 国产中文在线亚洲精品官网| 就去色综合| 国产区免费| 久久黄色免费电影| 91久久国产成人免费观看| 欧美久久网| 亚洲中文无码h在线观看| 国产成人毛片| 久久香蕉国产线看观看亚洲片| 欧美不卡视频一区发布| 1769国产精品免费视频| 国产精品九九视频| 久久99国产精品成人欧美| 99这里精品| 97超级碰碰碰碰精品| 国产特一级毛片| 国产成人av一区二区三区| 伊人色天堂| 亚洲精品国产日韩无码AV永久免费网 | 六月婷婷精品视频在线观看|