杜金姬,秦闖亮
一類具有logistic增長的隨機SIRS傳染病模型的平穩分布和滅絕性
杜金姬,秦闖亮
(信陽學院 數學與信息學院,河南 信陽 464000)
研究了一類具有logistic增長的隨機SIRS傳染病模型.通過Lyapunov函數法,證明了模型全局正解的存在唯一性.給出了模型正解存在平穩分布以及疾病滅絕的充分條件.
SIRS模型;平穩分布;滅絕性;logistic增長
從Kermack和Mckendric[1]先驅工作后,數學模型被廣泛應用于描述疾病的傳播和控制.各種隨機形式的流行病模型被建立和研究[2-8].在傳染病模型中,人口的增長采用logistic增長更符合實際.本文考慮一類具有logistic增長的隨機SIRS傳染病模型

為了分析系統(1)的長期行為,證明系統(1)存在唯一的全局正解.





下面的證明類似文獻[3].證畢.
平穩分布的存在性可以看作系統的隨機弱穩定性,即疾病將長期存在.
考慮積分方程



引理2中相關符號含義見文獻[9],這里不再贅述.



由式(5)~(7)可知

證明在一些假設條件下,疾病將滅絕.



本文研究了一類具有logistic增長的隨機SIRS傳染病模型,通過構造適當的Lyapunov函數證明了模型存在唯一的全局正解,給出了模型正解存在平穩分布和滅絕的充分條件.
[1] Kermack W O,McKendrick A G.Contributions to the mathematical theory of epidemics-I[J].Proc R Soc Lond Ser A Math Phys Sci,1927,115(772):701-721
[2] Zhang X,Liu X.Backward bifurcationn of an epidemic model with saturated treatment function[J].Math Anal Appl,2008,348: 433-437
[3] Wang L,Zhou D,Liu Z,et al.Media alert in an SIS epidemic model with logistic growth[J].Biol Dyn,2017,11(1):120-137
[4] 傅金波,陳蘭蓀.具有垂直傳染和接觸傳染的傳染病模型的穩定性研究[J].數學雜志,2016,36(6):1283-1290
[5] 張林,李存林,郭文娟.基于媒體報道下的一類SIRS傳染病模型研究[J].數學雜志,2018,38(5):887-895
[6] 石月蓮,李燦.一類具有logistic增長和飽和發生率的SIRI傳染病模型的全局動力學性態[J].數學的實踐與認識,2019,49(7): 299-307
[7] 穆宇光,徐瑞.一類具有飽和發生率和復發的隨機SIRI模型的穩定性[J].應用數學,2019,32(3):570-580
[8] 趙英英,胡華.帶有標準發生率和信息干預的隨機SIRS傳染病模型的滅絕性和平穩分布[J].應用數學,2018,31(3):704-713
[9] Knasminskii R.Stochastic Stability of Differential Equations[M].Berlin:Springer Science and Business Media,1980
[10] MAO X R.Stochastic Differential Equationss and Applications[M].Chichester UK:Horwood Publishing,2007
Stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth
DU Jinji,QIN Chuangliang
(School of Mathematics and Information,Xinyang College,Xinyang 464000,China)
A class of stochastic SIRS epidemic model with logistic growth was researched.The existence of a unique of the globel positive solution of the model was proved by using the Lyapunov function method.The sufficient conditions for the existence of a stationary distribution of the positive solutions to the model and the extinction of the disease were obtained.
SIRS model;stationary distribution;extinction;logistic growth
O175.1
A
10.3969/j.issn.1007-9831.2020.10.004
1007-9831(2020)10-0013-05
2020-05-01
河南省高等學校重點科研項目(20B110017);信陽市規劃項目(2019TS010);信陽學院資助項目(2018LYB02,2018LYB09)
杜金姬(1981-),女,河南許昌人,講師,碩士,從事生物數學研究.E-mail:djj168qcl@163.com