徐亮
幾何畫板是一個動態討論和研究數學問題的工具,它可以模擬知識的發生過程,可以設計成一種實驗課。在數學學科中,利用幾何畫板輔助教學往往能起到事半功倍的效果。因此幾何畫板對發展學生的思維能力,培養學生的創新精神、探索能力起著不可忽視的作用。
一、幾何畫板功能簡介
幾何畫板是一個適用于幾何(平面幾何、解析幾何等),物理的矢量分析、作圖、函數作圖的動態幾何工具。它為教師和學生提供了一個探索幾何圖形內在的關系環境。它以點、線、圓為基本元素,通過對這些基本元素的變換、構造、測算、計算、動畫、跟蹤軌跡等,它能顯示或構造出其它較為復雜的圖形。它的特色首先能把較為抽抽象的幾何圖形形象化,但是它最大的特色是“動態性”即:可以用鼠標拖動圖形上的任一元素(點、線、圓)而事先給定的所有幾何關系(即圖形的基本性質)都保持不變,這樣更有利于在圖形的變化中把握不變,深入幾何的精髓,突破傳統教學的難點。它是實現“數形結合”思想的一個有效的輔助教學工具。幾何畫板為數形結合創造了一條便捷的道路,它不僅對幾何模型的繪制提供信息,同時可以解決學生難以繪制的圖形,而且提供了圖形變換的動感,豐富多彩的動畫模型,給學生一種耳目一新的視覺感受,使學生從畫面中尋找到問題解決的方法和依據,并從畫面中去認清問題的本質,另外其豐富的測算功能使得對問題的觀察,試驗和歸納成為現實。
二、幾何畫板在高中數學教學中的應用
對于數學學科來說主要是抽象思維和理論思維,但從人類數學思維系統的發展來說,形象思維是最早出現的,并在數學研究和教學中都起著重要的作用。正如前蘇聯著名數學家A.H.柯爾莫戈洛夫所指出的:“只要有可能,數學家總是盡力把他們正在研究的問題從幾何上視覺化。”因此,隨著計算機多媒體的出現和飛速發展,在網絡技術廣泛應用于各個領域的同時,也給學校教育帶來了一場深刻的變革,用計算機輔助教學,改善人們的認知環境越來越受到重視。幾何畫板以其學習入門容易和操作簡單的優點及其強大的圖形和圖像功能、方便的動畫功能被國內許多數學教師看好,并已成為制作高中數學課件的主要創作平臺之一。
(一)幾何畫板在高中數學函數中的應用
“函數”是中學數學中最基本、最重要的概念,它的概念和思維方法滲透在高中數學的各個部分,同時函數是以運動變化的觀點對現實世界數量關系的一種刻畫,這又決定了它是對學生進行素質教育的重要材料。就如華羅庚所說:“數缺形少直觀,形缺數難入微?!睘榱私鉀Q數形結合的問題,在有關函數的傳統教學中多以教師手工繪圖,但手工繪圖有不精確、速度慢的弊端;應用幾何畫板快速直觀的顯示及變化功能則可以克服上述弊端,大大提高課堂效率,進而起到事倍功半的效果。
(二)幾何畫板在立體幾何教學中的應用
立體幾何是在學生已有的平面圖形知識的基礎上討論空間圖形的性質;它所用的研究方法是以公理為基礎,直接依據圖形的點、線、面的關系來研究圖形的性質。從平面圖形到空間圖形,從平面觀念過渡到立體觀念,無疑是認識上的一次飛躍。初學立體幾何時,大多數學生不具備豐富的空間想象的能力及較強的平面與空間圖形的轉化能力,主要原因在于人們是依靠對二維平面圖形的直觀來感知和想象三維空間圖形的,而二維平面圖形不可能成為三維空間圖形的真實寫照,平面上繪出的立體圖形受其視角的影響,難于綜觀全局,其空間形式具有很大的抽象性。如兩條互相垂直的直線不一定畫成交角為直角的兩條直線;正方體的各面不能都畫成正方形等。而應用幾何畫板將圖形動起來,就可以使圖形中各元素之間的位置關系和度量關系惟妙惟肖,使學生從各個不同的角度去觀察圖形。這樣,不僅可以幫助學生理解和接受立體幾何知識,還可以讓學生的想象力和創造力得到充分發揮。
(三)幾何畫板在平面解析幾何教學中的應用
平面解析幾何是用代數方法來研究幾何問題的一門數學學科,它研究的主要問題,即它的基本思想和基本方法是:根據已知條件,選擇適當的坐標系,借助形和數的對應關系,求出表示平面曲線的方程,把形的問題轉化為數來研究;再通過方程,研究平面曲線的性質,把數的研究轉化為形來討論。而曲線中各幾何量受各種因素的影響而變化,導致點、線按不同的方式作運動,曲線和方程的對應關系比較抽象,學生不易理解,顯而易見,展示幾何圖形變形與運動的整體過程在解析幾何教學中是非常重要的。這樣幾何畫板又以其極強的運算功能和圖形圖像功能在解析幾何的教與學中大顯身手。例如它能做出各種形式的方程(普通方程、參數方程、極坐標方程)的曲線;能對動態的對象進行“追蹤”,并顯示該對象的“軌跡”;能通過拖動某一對象(如點、線)觀察整個圖形的變化來研究兩個或兩個以上曲線的位置關系。
綜上所述,使用幾何畫板進行數學教學,通過具體的感性的信息呈現,能給學生留下更為深刻的印象,使學生不是把數學作為單純的知識去理解它,而是能夠更有實感的去把握它。這樣既能激發學生的情感、培養學生的興趣,又能大大提高課堂效率。