寇警言
【摘 ?要】隨著初中數學知識的不斷整合、重難點的不斷更新,當前初中數學知識結構較為龐大,對于學生思維能力的要求逐漸提高。數學思維能力在學生攻克重難點、高效解決問題中有著不可忽視的作用,同時學生若想在初中數學的學習中披荊斬棘,也離不開思維能力的強化。基于以上背景,本文針對初中數學培養學生思維能力的有效策略進行簡單探究。
【關鍵詞】思維能力;思維導圖;數形結合
目前初中數學知識既有深度也有廣度,不同的知識點絕不是學生在課上聽懂就能夠輕松掌握的,因此在實際教學中,很多學生在初中便出現了“掉隊”的現象。除此之外還有一個普遍情況就是很多學生都出現了課上能聽懂,課下不會做的現象,究其原因就是沒有形成一個完善的思維能力,從而無法應用聽懂的知識去有效解決實際問題。為此,本文針對數學思維能力的培養策略提出了以下幾點建議。
一、善用思維導圖,理清知識結構
初中數學的教學內容明顯呈現出一種“串聯化”的態勢,即每一個新的知識點都是曾經學過的舊知識點的延伸,同時也是后續所學知識的基礎。因此一旦學生對某部分知識理解不透徹,掌握不牢固,就會給后續的學習造成非常大的不利影響。因此幫助學生理清知識結構,讓學生將所學知識由點成面地結合起來是提高其思維能力的必要過程,而思維導圖正是實現上述目標的有效途徑。
思維導圖是幫助學生理清知識結構,梳理所學內容的重要方法,同時可以幫助學生有效區分一些相似類似的知識點,保障學生在今后的學習中不亂用、不混用。比如,當教師講完人教版初中數學“全等三角形”一部分內容后,由于該部分內容證明題較多,且證明的方法較多,因此需要學生牢記的一些定理與判定公式較多,因此很多學生便出現了對知識點理解不透徹且記不牢的情況,如此遇到一些較為綜合的題型,學生就會不知所措。為此教師可以以問題導向的形式帶領學生做一個關于此部分內容的思維導圖,即首先詢問學生:“三角形全等的判定條件都有什么呢?”學生回答后教師要求其將具體判定方法說出,學生每回答一個教師就在思維導圖中寫一個,當學生將“SSS、SAS、ASA、AAS、HL”,所有判定方法準確說出后,還需要在每一個判定定理后面為學生總結一道例題,這樣就能清晰明確地幫學生梳理知識結構,學生對所學知識的掌握也會更加牢固,思維能力也會逐步提高。
二、巧用數形結合,培養解題思維
在初中數學中,由于題型多變且復雜,因此需要學生具備相對完善的解題思維。同時由于很多教學內容都是與圖像相結合的,且很多題型也是能夠借助畫圖輕松解決的,因此數形結合思想的應用非常廣泛,且對于學生思維能力的提高與強化也有著顯著作用。
雖然教師都深知數形結合的重要作用,但是在當前實際教學中學生的數形結合思想還是非常欠缺,針對很多能用數形結合輕松解決的題型,學生卻選擇了復雜的解題方法,為此教師需要為學生講解一些數形結合的經典例題,從而深化學生的解題思維。
三、注重分層教學,強化思維能力
由于初中學段的數學知識內容已經逐漸趨于綜合化、深入化,為此班級內會出現不同的學生數學基礎不同,思維能力不同的現象。而教師若針對班級學生制定相同的教學目標,那么很容易導致優等生思維能力得不到進一步提高,學困生的思維能力無法強化。而分層教學是解決上述問題的有效教學方法,從而保證班級學生的思維能力共同提高。
應用分層教學就是根據不同學生的不同能力應用不同的教學方法,安排不同的學習任務。比如,班級內有個別學生非常聰明,課上一聽就懂,但是對于學習的重視程度不夠,由此導致該類學生的思維能力一般,對于此類學生教師首先要嚴格要求,端正其學習態度,繼而在后續的教學中多為其安排一些基礎與綜合穿插的題型,意在保證強化基礎的同時提高思維能力。對于班級那些能力較強的學生,教師則著重安排一些綜合拔高題的學習任務,并且定期為其分享一些針對綜合類題型的解題思路的精講視頻供其課下觀看,意在讓學生循序漸進地進一步突破自己。最后針對那些能力較差的學生,首先教師在教學任務的安排中要以基礎題為主,沒有基礎,其他一切都是空談,之后教師可以讓該類學生自行總結一些章節的知識點,獨立做出思維導圖,從而理順所學知識結構,梳理自己的學習思路,逐步提升自身的思維能力。綜上,分層教學能夠讓每一位學生獲得與他們能力相匹配的教學方法、學習任務,保證其思維能力最大化的提升。
總而言之,在初中培養學生的思維能力是絕對必要的,也是符合新時代下教育體制改革方向的正確教學目標,但是若想實現并不是一蹴而就的,還需要教師在長期實踐中不斷改進與完善。為此,本文提出了以上三點建議,教師在沿用上述策略時,定要結合自己班級學生的實際情況,切實凸顯學生的主體地位,最終保證教學有效性的實現。
參考文獻:
[1]陳澤云.初中數學教學中學生思維能力培養策略探究[J].科學咨詢(教育科研),2017(02).