999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

INTEGRAL FORMULAS FOR COMPACT SUBMANIFOLDS IN EUCLID SPACE

2020-08-13 10:31:44WANGQiZHOUZhijin
數學雜志 2020年4期

WANG Qi,ZHOU Zhi-jin

(School of Mathematics and Information Science,Guiyang University,Guiyang 550005,China)

Abstract:In this paper,we study the problem of integral formulas for an oriented and compact n-dimension isometric immersion submanifold Mnwithout boundary in the(n+p)-dimension euclid space Rn+p.At first,we define the r-th higher order mean curvature Hr(0≤r≤n)along the direction of the unit mean curvature vector field ξ to Mn,and then we attain a new integral formula,by applying the method of moving frame and exterior differential,which generalizes a classical integral formula in the case of codimension p=1,that is in the case of hypersurfaces.

Keywords:euclid space;compact submanifold without boundary;mean curvature vector field;higher order mean curvature;integral formula

1 Introduction

It is well known that study on hypersurfaces and submanifolds in euclid space is one of fundamental tasks of differential geometry.For oriented and compact isometric immersion hypersurfaces in euclid space,references[1–3]ever established a classical integral formula,that is the following Theorem 1.1.

In this paper,we study an oriented and compactn-dimension isometric immersion submanifoldMnin the(n+p)-dimension euclid spaceRn+p.Letξbe the unit mean curvature vector field ofMn.At first,we define the higher order mean curvatureHr(r=0,1,2,···,n)along the directionξ.And then,by applying the method of moving frame and exterior differential,we attain a new integral formula,that is the following Theorem 1.2.When codimensionp=1,Theorem 1.2 becomes Theorem 1.1.

Theorem 1.1(see[1–3])Let?:M→Rn+1be an oriented and compact isometric immersion hypersurface without boundary.Then the following integral formulas hold

hereNis the unit normal vector field toM,Hkis thek-th higher order mean curvature ofMandis the euclid inner product inRn+1,dMis then-dimension Riemann volume form forM.

Theorem 1.2Let?:Mn→Rn+pbe an oriented and compactn-dimension isometric immersion submanifold without boundary.Then the following integral formulas hold

hereξis the unit mean curvature vector field toMn,Hkis thek-th higher order mean curvature along the directionξandis the euclid inner product inRn+p,dMis then-dimension Riemann volume form forMn.

2 Preparation

LetRn+pbe the(n+p)-dimension euclid space and(Mn,g)be a smoothn-dimension Riemann manifold.Denote by?:Mn→Rn+pa smooth immersion mapping between smooth manifolds.If the equationholds everywhere onMn,thenMnor?(Mn)is called an isometric immersion submanifold inRn+p.Hereis the euclid inner product ofRn+pand??is the pull-back mapping for the immersion mapping?.

In this paper,we prescribe the index range as

Denote by{eA}a local unit orthogonal frame field forRn+psuch that when being confined ontoMn,{ei}is a local unit tangent frame field toMnand{eα}is a local unit normal frame field toMn.

Denote by{ωA}the dual frame field for{eA},then the second fundamental formIIforMncan be expressed in component form as

Define the mean curvature vector fieldσtoMnas

It is well-known that the definition ofσis independent on the choice of the local unit orthogonal frame field{eA}.

We consider the unit mean curvature vector fieldξ=σ/|σ|.Let{λi}be the principal curvature functions along the directionξ,then ther-th higher order mean curvatureHr(r=1,2,...,n)is defined as

Reference[3]ever attained a fundamental integral formula that is the integral of the Codazzi tensor field on an isometric immersion hypersurface inRn+1.Similar to reference[3],forn-dimension isometric immersion submanifoldMnofRn+p,we attain the following Lemma 2.2.Here we firstly recall some relevant fundamental concepts and properties.Assume thatSis a tensor field of type(k,k)on a Riemann manifold(Mn,g).IfSis anti symmetric both to its each pair of covariant indices and to its each pair of contravariant indices,then we write

ForS∈Γ(End Λk(TM)),T∈Γ(End Λl(TM)),we also consider the tensor field of type(k+l,k+l),

and the definition ofS?Tis that the exterior product of covariant components ofSand the covariant components ofT,and respectively the exterior product of contravariant components ofSand the contravariant components ofT.And by reference[3],this product?is associative and commutative.

Definition 2.1(see[3],Codazzi tensor field)Let(Mn,g)be an-dimension Riemann manifold andS∈Γ(End Λk(TM)).If for allC∞vector fieldX1,X2,···,Xk+1∈Γ(TM)we have

thenSis called a Codazzi tensor field onMn,here?is the Levi-Civita connection of(Mn,g).

According to reference[3],we know that ifSandTare Codazzi tensor field respectively of type(k,k)and type(l,l)on(Mn,g),thenS?Tmust be a Codazzi field tensor field of type(k+l,k+l)onMn.From reference[3],we also define a Codazzi tensor fieldAof type(1,1)onMn.Let(Mn,g)be an-dimension Riemann manifold andψ:Mn→Rn+pbe an isometric immersion mapping.LetYbe the position vector field ofψ(Mn)inRn+p,then the Codazzi tensor fieldAof type(1,1)is determined by

Now we are ready to prove the following Lemma 2.2.

Lemma 2.2let(Mn,g)be an-dimension Riemann manifold andψ:Mn→Rn+pbe an oriented and isometric immersion mapping.Letψ(Mn)be compact and be without boundary.Assume thatSis a Codazzi tensor field of type(k,k)onMn,then the following integral formulas hold

HeredVis then-dimension Riemann volume form ofMnandtraceis the trace operator.

ProofDenote bydVthen-dimension Riemann volume form ofMn,then the following equation

determines a(n?1)form and it is written ashereYtanis the tangent component toMnof the position vectorYforψ(Mn)inRn+p.

From reference[3]and direct computation,we have

here?is the Levi-Civita connection of(Mn,g).At first we assume thatSis a Codazzi tensor field of type(n?1,n?1).

Let{ei}is an unit orthogonal frame forMnand write

We can seeω=α?Sas a(n?1)form which takes value in Γ(End Λk(TM).By the computation in reference[3],we have

BecauseSis a Codazzi tensor field,the second term of the above equation vanishes and so we have

BecauseMnis compact and is without boundary,And so Lemma 2.1 holds in the case thatSis a Codazzi tensor field of type(n?1,n?1).Now we assume thatSis a Codazzi tensor field of type(k,k).Denote byIthe identity element of Γ(End Λn?k?1(TM)).

BecauseIis parallel,I?Sis a Codizza tensor field of type(n?1,n?1).So from the above conclusion we have

Finally we notice that

we already finish the proof of Lemma 2.2.

3 Proof of Theorem 1.2

Theorem 1.2Let?:Mn→Rn+pbe an oriented and compactn-dimension isometric immersion submanifold without boundary.Then the following integral formulas hold.

hereξis the unit mean curvature vector field toMn,Hkis thek-th higher order mean curvature along the directionξandis the euclid inner product inRn+p,dMis then-dimension Riemann volume form forMn.

ProofLetTξbe the shape operator ofMnalong the direction of the unit mean curvature vector fieldξ,that is to say,Tξis a tensor field of type(1,1)onMndefined by

hereis the Levi-Civita connection ofRn+p.

Because the Levi-Civita connectionis flat,by the Codazzi equation for submanifold(see[4]),we know thatTξis a Codazzi tensor field of type(1,1)onMn.

Denote byλ1,λ2,···,λnthe characteristic values ofTξand byσrther-th fundamental homogeneous symmetry polynomial,that is

Denote by

the support function ofMnalong the directionξ.Then it is easy to seeA=?hTξ.By direct computation,we have

Now we recall once again the definition of the higher order mean curvatureHralong the unit mean curvature vector fieldξ

We notice the above(3.1),(3.2)and then we apply Lemma 2.2,we already finish the proof for Theorem 1.2.

主站蜘蛛池模板: 日韩精品一区二区三区大桥未久 | 91无码人妻精品一区二区蜜桃| 伊人无码视屏| 欧美国产菊爆免费观看 | a级毛片免费看| 亚洲午夜片| 亚洲 日韩 激情 无码 中出| 亚州AV秘 一区二区三区| 成人国产精品一级毛片天堂| 国产一级毛片yw| 久久国产精品夜色| 日韩精品一区二区三区免费| 在线观看亚洲人成网站| 久久夜色精品国产嚕嚕亚洲av| 免费欧美一级| 亚洲国产一成久久精品国产成人综合| 日韩美女福利视频| 亚洲视频免费在线看| 精品国产99久久| 国产一级毛片网站| 精品无码一区二区在线观看| 青青草原偷拍视频| 亚洲三级视频在线观看| 91久久国产热精品免费| 国产亚卅精品无码| 国产精品专区第一页在线观看| 波多野结衣一区二区三区88| 91高清在线视频| 精品五夜婷香蕉国产线看观看| 制服丝袜无码每日更新| 99成人在线观看| 色亚洲激情综合精品无码视频| 国产精品永久久久久| 欧美自慰一级看片免费| 国产又色又爽又黄| 国产在线观看一区二区三区| 91在线无码精品秘九色APP| av一区二区人妻无码| 国产精品成人第一区| 亚洲成A人V欧美综合天堂| 亚洲综合婷婷激情| 一区二区日韩国产精久久| 不卡午夜视频| 国产精品自在拍首页视频8| 丰满人妻久久中文字幕| 国产手机在线ΑⅤ片无码观看| 99精品国产电影| 伊人久久大香线蕉成人综合网| 亚洲中文字幕久久精品无码一区| 亚洲va视频| 国产网友愉拍精品| 免费在线国产一区二区三区精品| 国产欧美自拍视频| 午夜性刺激在线观看免费| 免费一级全黄少妇性色生活片| 欧美一道本| 国产精品亚洲五月天高清| 免费a在线观看播放| 欧美黄网站免费观看| 爆乳熟妇一区二区三区| 久久国产V一级毛多内射| 国产凹凸视频在线观看| 最新国语自产精品视频在| 国产又粗又猛又爽| 天堂成人av| 日韩精品无码一级毛片免费| 91精品国产自产91精品资源| 国产日韩欧美在线播放| 国产在线观看一区精品| 免费女人18毛片a级毛片视频| 亚洲AV无码乱码在线观看裸奔| 国产精品第| 国产乱子精品一区二区在线观看| 国产精品女人呻吟在线观看| 人妻91无码色偷偷色噜噜噜| 欧美在线天堂| 久久伊伊香蕉综合精品| 色综合日本| 国产精品永久不卡免费视频| 成人亚洲视频| 国产毛片片精品天天看视频| 91香蕉视频下载网站|