999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NONCONFORMING FINITE ELEMENT METHOD FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH MOVING GRIDS

2020-08-13 10:32:00ZHANGFeiranZHUYan
數學雜志 2020年4期

ZHANG Fei-ran,ZHU Yan

(School of Mathematics and Statistics,Shangqiu Normal University,Shangqiu 476000,China)

Abstract:In this paper,the nonlinear Klein-Gordon equation is studied.By using the Crank-Nicolson moving grid nonconforming finite element method,the traditional Riesz projection operator is not needed,interpolation techniques and special properties of the element are used to obtain the corresponding convergence analysis and optimal error estimation.

Keywords:Klein-Gordon equation;anisotropy;moving grids;nonconforming;Crank-Nicolson scheme

1 Introduction

Moving grids method has important applications in a variety of physical and engineering areas such as solid and fluid dynamics,combustion,heat transfer,material science,etc.This method is more efficient than the fixed grids and does not increase computing cost.We usually apply the finite element methods to the spatial domain,but choose difference methods with respect to the time variable for solving evolution partial differential equations.At the same time,different meshes of domain are used at different time level.

Several moving grids techniques were studied.Such as[1]considered the moving grids finite element method;[2]and[3]constructed and analyzed this method for the oil-water two-phase displacement problem;[4–8]analyzed the parabolic,Stokes problems,parabolic integro-differential equations,generalized nerve conductive equations and fractional diffusion equations with moving grids nonconforming finite element scheme respectively.But the analysis in the above studies relies on the regular condition or quasi-uniform assumption for meshes.

The Klein-Gordon equation is the most basic equation used in relativistic quantum mechanics and quantum field theory to describe a spin-zero particle.The equation is closely related to the physical problem and plays an important role in the study of soliton.In[9],authors studied the existence of a unique global solution under the condition that the parameter is small enough.In[10],a display difference scheme was established for one-dimensional Klein-Gordon equation of unbounded region,and the results of stability and convergence of the scheme were obtained by the energy analysis method.In[11],the numerical solution of one-dimensional Klein-Gordon equation was studied.However,the finite element method for the Klein-Gordon equation is rare.

In this paper,we mainly focus on the convergence theory,the finite element method of moving grids is introduced,and the Crank-Nicolson discrete scheme of the nonlinear Klein-Gordon equation is analyzed without requiring the subdivision to satisfy the regular hypothesis,and the corresponding optimal error estimation of the moving grid approach is derived.It is worth mentioning that,in the usual finite element method of moving meshes,it is necessary to use the Riesz projection to approximate the solution of the original problem,and this paper makes use of the particularity of the element structure,that is,u?Πuand the elements in the finite element space are orthogonal in the sense of energy mode,and the Riesz projection is used to simplify the proof process of the previous documents.

2 Element Construction

3 The Moving Grids Approximation of Crank-Nicolson Discretization Scheme

We consider the nonlinear Klein-Gordon equation

whereX=(x,y),α>0,γ>0,g(u)satisfies the Lipschitz continuous conditionon on the variableu,and has the second order bounded partial derivative.

Letut=Q,(3.1)is equivalent to the following question

The variational formulation for problem(3.2)is written as:

Then the approximation problem corresponding to(3.3)reads as:finduh,Qh∈Vh,?vh∈Vh,such that

In this section we apply the idea of moving grids to problem(3.4)and develop the Crank-Nicolson discretization scheme for anisotropic finite element.Let 0=t0

Now,we introduce the Crank-Nicolson discretization scheme of anisotropic finite element to determine the function valuesas follows

4 Error Estimates

The main error between the solutionu(X,t)and the approximation solutionuh(X,t)consists of three parts:the interpolation error with respect to the finite element method,the difference error with respect to the time,and the error of moving grids.

主站蜘蛛池模板: 四虎永久在线精品国产免费| 青青国产视频| 亚洲无码久久久久| 国产亚洲视频免费播放| 中文字幕首页系列人妻| 99在线视频网站| 91久久偷偷做嫩草影院精品| 欧美在线综合视频| 日本午夜三级| 亚洲性影院| 狠狠色婷婷丁香综合久久韩国 | 91精品专区国产盗摄| 国产精品夜夜嗨视频免费视频| 国产成人a在线观看视频| 免费a级毛片18以上观看精品| 中文国产成人精品久久一| 国产青青操| 亚洲自偷自拍另类小说| 国产精品尤物铁牛tv| 免费A∨中文乱码专区| 国产精品久线在线观看| 亚洲大尺码专区影院| 国产99欧美精品久久精品久久| 最新加勒比隔壁人妻| 欧美成人影院亚洲综合图| 午夜视频在线观看区二区| 日本三区视频| 国产99精品久久| 国产性爱网站| 最新亚洲人成无码网站欣赏网 | 国产一区亚洲一区| 亚洲成a人在线播放www| 日本AⅤ精品一区二区三区日| 欧美精品影院| 三上悠亚一区二区| 欧洲在线免费视频| 久久久久亚洲av成人网人人软件| 亚洲男人的天堂在线| 伊人五月丁香综合AⅤ| 国产菊爆视频在线观看| 亚洲日本韩在线观看| 国产亚洲精品97在线观看| 91香蕉视频下载网站| 2020久久国产综合精品swag| 性欧美久久| 欧美视频二区| 国产chinese男男gay视频网| 色欲国产一区二区日韩欧美| 色网站在线视频| 97久久精品人人| 另类重口100页在线播放| 永久在线播放| 日韩精品一区二区深田咏美| a级免费视频| 色婷婷色丁香| 国产亚洲高清视频| 91破解版在线亚洲| av在线手机播放| 久久亚洲国产一区二区| 日本草草视频在线观看| 国产成人调教在线视频| 制服丝袜 91视频| 亚洲人成日本在线观看| 四虎永久在线视频| 一级一级特黄女人精品毛片| 9啪在线视频| www.91在线播放| 中文字幕永久视频| 亚洲天堂网在线视频| 手机精品福利在线观看| 国产福利免费视频| 1769国产精品免费视频| 999福利激情视频| 久久精品女人天堂aaa| 成人亚洲国产| 久久一色本道亚洲| 亚洲欧洲自拍拍偷午夜色| 波多野结衣视频网站| 欧美色99| 日本精品影院| 亚洲国产精品日韩av专区| 欧美专区在线观看|