999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE COMMUTATOR TYPE AND THE LEVI FORM TYPE IN C3

2020-08-13 10:31:44YINWankeYUANPingsanCHENYingxiang
數學雜志 2020年4期

YIN Wan-ke,YUAN Ping-san,CHEN Ying-xiang

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

Abstract:For any fixed(1,0)vector field of a pseudoconvex hypersurface in C3,we prove that its commutator type and Levi form type are equal to each other.This answers affirmatively a problem of D’Angelo in complex dimension three.

Keywords:finite type;pseudoconvex hypersurface;Bloom conjecture;sub-elliptic estimates

1 Introduction

The finite type conditions gave their rise from the investigation of the subellipticity of the-Neumann operator.For any boundary point of a smooth pseudoconvex domain in C2,Kohn[1]introduced three kinds of integer invariants,which are respectively the regular contact type,the commutator type and the Levi form type.Kohn proved that these invariants are equal to each other.When they are finite at a boundary point,the domain possesses local sub-elliptic estimates near this point.The domain is said to be of finite type if these invariants are finite at each boundary point of the domain.

Ever since then,much attention paid to generalize these finite type conditions to the higher dimensional case.Kohn[2]defined the subelliptic multiplier ideals near each boundary point of a pseudoconvex domain,and if 1 is in any of these ideals,the boundary point is said to be of finite ideal type.In[3],D’Angelo introduced the D’Angelo finite type condition in terms of the order of contact with respect to singular complex analytic varieties.Both of these finite type conditions imply the existence of the sub-elliptic estimates.Bloom[4]generalized Kohn’s type conditions in C2directly to higher dimensional spaces.More precisely,for a smooth real hypersurfaceM?Cnandp∈M,Bloom defined the regular contact typea(s)(M,p),the commutator typet(s)(M,p)and the Levi-form typec(s)(M,p)ofMatp.Bloom conjectured in[4]that these three invariants are the same when the hypersurface is pseudoconvex,which is known as the Bloom conjecture.Bloom-Graham[5]and Bloom[6]proved the conjecture fors=n?1.In[4],Bloom showed thata(1)(M,p)=c(1)(M,p)whenM?C3.Recently,Huang-Yin[7]proved that the Bloom conjecture holds fors=n?2.This,in particular,gave a complete solution of the conjecture in complex dimension 3.

For a fixed(1,0)type vector fieldLat a pointpof a smooth real hypersurface,D’Angelo introduced the commutator typet(L,p)and the Levi form typec(L,p).

In fact,letM?Cnbe a smooth real hypersurface withp∈M,and letρbe a defining function ofMnearp.Denote byM1(L)theC∞(M)-module spanned byLandFor anyk≥1,we inductively defineMk(L)to be theC∞(M)-module spanned byMk?1(L)and the elements of the of form[X,Y]withX∈Mk?1(L)andY∈M1(L).We say the commutator typefor anyF∈Mm?1(L)butfor a certainG∈Mm(L).We define the Levi form typec(L,p)=mif for anym?3 vector if eldsF1,···,Fm?3ofM1(L),we have

and for a certain choice ofm?2 vector fieldsG1,···,Gm?2ofM1(L),we have

D’Angelo[8]conjectured that these two types equal to each other when the real hypersurface is pseudoconvex.He confirmed the conjecture when one of the type is exactly 4.The present paper is devoted to proving this conjecture when the real hypersurface is in C3.

Theorem 1.1LetMbe a smooth pseudoconvex hypersurface in C3andp∈M.For any fixed(1,0)vector fieldLnearp,we havet(L,p)=c(L,p).

2 Proof of Main Theorems

This section is devoted to the proof of Theorem 1.1.

Let(z1,,z2,w)be the coordinates in C3.Suppose thatp=0,and the defining function ofMtakes the form

For anyj=1,2,write

ThenL1andL2form a basis of the complex tangent vector fields of type(1,0)alongMnear 0.Suppose thatAfter a linear change of coordinates,we can assumeA1(0)60 andA2(0)=0.Notice that for any smooth functionfonMwithf(0)0,we havet(fL,0)=t(L,0)andc(fL,0)=c(L,0).Thus we can replaceLby,thenLtakes the form.

Denote byl0?2 the vanishing order ofand denote bym0?2 the vanishing order ofThe proof of main theorem is carried out for three cases,according to the values ofl0andm0.

Case IIn this case,we assumel0=m0=∞.

For any fixed integerk,after a holomorphic change of coordinates,we make

A direct computation shows thatt(L,0)≥kandc(L,0)≥k.By the arbitrariness ofk,we obtaint(L,0)=c(L,0)=+∞.

Case IIIn this case,we assumem0<∞andl0>m0.

After a holomorphic change of coordinates(see[4]or[7]),we makecontains no holomorphic or anti-holomorphic terms,and the terms of degreem0inis non-zero.Also,we make the vanishing order ofis at leastm0.Now,we introduce the following weighting system

Define

Denote byOwt(k)a smooth function or vector field with weighted degree at leastk.Then we have

Thus for any 1≤j≤m0?2 andX1,···,Xj∈M1(L),the weighted degree of terms in

are at leastm0?j+2.Hence both of them are 0 when restricted to the origin for any 1≤j≤m0?3.Whenj=m0?2,by considering the weighted degree,we know

and

here(Xh)?1is the sum of the vector field terms inXhof weighted degree?1.

Notice thatL?1is an(1,0)tangent field of the real hypersurface defined byρ(m0)=0,which must be pseudoconvex.By the finite type theory is dimension 2(see[9]),we havet(L?1,0)=c(L?1,0)=m0.Thus in(2.1)and(2.2),we can chooseXhfor 1≤h≤m0?2 such that the two expressions are non-zero.This meanst(L,0)=c(L,0)=m0.

Case IIIIn this case,we assumem0<∞andl0≤m0?1.

After a holomorphic change of coordinates,we eliminate the holomorphic and antiholomorphic terms inEup to orderm0,and get rid of the holomorphic terms inAup to orderl0.As in Case II,we define

Denote bym1the lowest weighted vanishing order ofρ(z,00)with the weights given in(2.3).Thenm1≤m0.Define

Write

By our construction and definition,we have

By a similar weighted degree estimate as in Case II,for any 1≤j≤m0?3 andX1,···,Xj∈M1(L),we know

Also,for anyX1,·,Xm1?2∈M1(L),we have

and

ConsiderL?1as a complex(1,0)tangent vector field ofM0:={ρ(m1)=0}.We claim thatt(L?1,0)=c(L?1,0)=m1.

SinceL?1is real analytic,by the Nagano Theorem,Re(L?1),Im(L?1)and their Lie brackets will generate a homogeneous real manifoldN0.

Suppose thatt(L?1,0)>m1,then for anyX1,·,Xm1?2∈M1(L?1),

On the other hand,for anyj≥0,is a weighted homogeneous polynomial of degreem1?j?2.Hence it must be 0 when(z,w)=0 and1?2.Thusj≥0,we have

Next,suppose thatc(L?1,0)>m1,then for anyj≤m1?3,X1,···,Xj∈M1(L),we have A similar weighted degree argument shows that for anyj≥0,X1,···,Xj∈M1(L?1),we have

The proof of Theorem 1.1 is completed.

主站蜘蛛池模板: 国产精品视频第一专区| 老司机精品久久| 欧美精品色视频| 欧美精品不卡| 国产精品无码久久久久AV| 国产精品福利在线观看无码卡| 国产精品一区在线麻豆| 国产尤物jk自慰制服喷水| 欧美h在线观看| 欧美日韩成人| 亚洲欧美日韩综合二区三区| 四虎永久免费地址在线网站 | 嫩草在线视频| 国产成人欧美| 国产欧美日韩综合一区在线播放| 国内精品伊人久久久久7777人| 青青青草国产| 看国产一级毛片| 日本少妇又色又爽又高潮| 欧美国产日产一区二区| 国产麻豆另类AV| 亚洲一区无码在线| 91视频青青草| 色网站在线视频| 毛片网站观看| 免费毛片全部不收费的| 精品91在线| 久久99热这里只有精品免费看| 欧美日一级片| 久久黄色毛片| 欧美精品1区2区| 国产成人免费视频精品一区二区| 欧美色香蕉| 蜜桃视频一区二区| 中文字幕资源站| 真人免费一级毛片一区二区| 全免费a级毛片免费看不卡| 亚洲精品国产首次亮相| 91精品免费高清在线| 久久情精品国产品免费| 高清不卡毛片| 亚洲天堂成人在线观看| 最新日韩AV网址在线观看| 精品国产成人国产在线| 精品自窥自偷在线看| 青草视频免费在线观看| 亚洲av无码久久无遮挡| 亚洲中文字幕国产av| 日韩一二三区视频精品| 欧美亚洲欧美区| 玩两个丰满老熟女久久网| 五月婷婷综合色| 中文字幕第4页| 青青操视频在线| 亚洲激情99| 永久免费无码日韩视频| 97se亚洲综合在线天天| 欧美成在线视频| 国产精品吹潮在线观看中文| 超碰91免费人妻| 亚洲人成影院在线观看| 成人福利在线观看| 97综合久久| 精品欧美视频| 国产99免费视频| 曰AV在线无码| 日本在线欧美在线| 国产精品不卡永久免费| 国产欧美日韩另类| 在线免费无码视频| 强乱中文字幕在线播放不卡| 久青草网站| 欧美日韩免费| 蜜桃视频一区| 91精品视频在线播放| 欧美怡红院视频一区二区三区| 久久久噜噜噜久久中文字幕色伊伊 | 国产18在线| 国产成年无码AⅤ片在线 | 亚洲精品欧美日本中文字幕| 2020精品极品国产色在线观看| h网址在线观看|