趙文慧,王利強,孔維敬
(天津職業技術師范大學電子工程學院,天津 300222)
高爐(blast furnace,BF)作為冶煉生產中最為關鍵的設備,其工作環境具有高溫、高壓和密閉的特點[1],這就導致了不能通過有效且及時的方法來獲取到高爐煉鐵過程中的爐內生產情況,因此無法對高爐進行及時準確的爐況識別和操作。目前,掌握爐內生產狀況最為直接有效的方式就是利用CCD紅外攝像機獲取高爐料面圖像信息。觀察料面圖像可知,中心煤氣流和邊緣煤氣流均存在,且中心煤氣流發展而邊緣煤氣流稍弱為正常生產狀態;而只存在中心煤氣流或只存在邊緣煤氣流為非最佳燃燒狀態,中心煤氣流偏行或其他異常分布時則可能為異常爐況燃燒狀態。CCD攝像機獲取的高爐料面的紅外圖像因易受大氣吸收和散射作用影響,其低頻分量較大,邊緣較為平滑,直接通過此圖像信息進行高爐爐況識別的難度較大[2]。
通過紅外料面圖像對高爐爐況進行準確、實時獲取與識別已成為當前的熱點研究問題,引起了研究人員的廣泛關注。吳敏等[3]提出了一種基于料面溫度場的模糊C均值聚類識別高爐煤氣流分布的方法;蔣朝輝等[4]提出一種新型的高爐料面輪廓檢測方法,通過采用分數階的多向微分算子提取一組料面輪廓可行域,并用改進的Canny算子對其進行修正和補償,得到連續準確的料面輪廓曲線。朱寅等[5]提出一種基于小波增強算法和Retinex算法的高爐料面圖像分解和增強處理方法。而以上方法的數學模型較復雜,在實際生產中的實時性和可應用性不強。2006年,美國的科學家Donoho、Candes等提出壓縮傳感(compressed sensing,CS)理論。該理論指出:若信號本身是可壓縮的或在某個變換域可以被稀疏表示,那么利用一個測量矩陣將此高維信號投影到一個低維空間上,通過在低維空間求得最優化解就可以高概率地重構出原信號。同理,對于圖像信號來說,經過稀疏變換后,通過少量的觀測值也可重建出原始圖像[6]。基于以上研究,本文提出一種基于壓縮感知理論的高爐料面圖像重建算法。
構建測量矩陣,通過低維度的測量矩陣獲取實時的高爐料面圖像信息,極大地降低了傳輸信號所需帶寬,然后在外部計算機中基于信號稀疏特性,利用匹配追蹤算法恢復完整的原始圖像。高爐料面圖像重建算法流程如圖1所示。

圖1 高爐料面圖像重建算法流程
通常測量矩陣構造方法有構造隨機測量矩陣、結構化隨機測量矩陣和確定性測量矩陣[7-8]。針對圖像信號,構造稀疏變換矩陣常用的方法是離散余弦變換(discrete cosine transform,DCT)、離散小波變換、有限差分及冗余字典等[9-10]。
根據壓縮感知理論,測量矩陣Φ選擇隨機生成的高斯矩陣便可符合構造要求。當原始二維圖像信號X在時域不具備稀疏特性時,需要首先利用稀疏變換矩陣Ψ對其進行稀疏變換,即

其中,經過變換后的圖像信號S可看作稀疏信號。構造正交小波變換矩陣作為稀疏變換矩陣Ψ。

式中:矩陣H、G分別為由消失矩P的分解低通濾波器h和高通濾波器g構造的矩陣。它們的每行是由長度為 N/2n-1的向量:[h(0),h(1),…,h(2P-2),h(2P-1),0,0,…,0]和[g(0),g(1),…,g(2P-2),g(2P-1),0,0,…,0]分別圓周2移位獲得。根據濾波器的正交性質,不難證明,ΨΨT=ΨTΨ=I。
在獲得稀疏信號的基礎上。對其進行投影可得最終觀測結果Y,即

在壓縮傳感理論中,最核心的部分就是重構算法。目前為止出現的重構算法包括最小范數法、匹配追蹤算法、最小全變分法等[11-12]。而匹配追蹤算法又包括一系列的算法,其中正交匹配追蹤(orthogonalmatching pursuit,OMP)算法通過最小二乘法來實現迭代逼近,算法運算速度快、易于實現,因此選擇使用經典的OMP算法由高爐料面觀測結果Y重建原始料面圖像X。
OMP算法的流程如下:
(1)輸入 觀測信號Y,測量矩陣Φ,稀疏度K。
(2)初始化 迭代次數k=0,殘差r0=Y,索引集
當k≤K時,循環步驟1-步驟4。
步驟1 原子識別
計算ΦTrk-1,找出Φ中與殘差rk-1乘積最大的列φ()i,并記錄對應該原子的序號
步驟2 擴容估計支撐集
更新索引集 Λk= Λk-1∪λk,更新支撐集 ΦΛk=[ΦΛk-1,Φλk]。
步驟3 信號估計

步驟4 更新殘差

(3)輸出 索引集Λk和重建信號。
本文中原始高爐料面靜態圖像數據均來源于唐山某鋼廠料面動態視頻。6種典型的高爐料面圖像如圖2所示。
以圖2中的6種不同狀況下的料面圖像為例進行算法的仿真結果展示和分析。通過小波變換矩陣對原始圖像進行稀疏化。在料面圖像具有稀疏特性的基礎上,利用測量矩陣Φ對料面圖像進行觀測,獲取低維度觀測信號圖像,壓縮感知觀測圖像如圖3所示。將低維觀測信號圖像傳輸至外部計算機后,通過OMP重建算法獲得最終重建得到的完整料面圖像,重建得到的料面圖像如圖4所示。根據圖4即可對高爐內部爐況進行識別,從而對高爐煉鐵的下一步操作生成指導信息。
利用峰值信噪比PSNR[13]衡量本算法的圖像重建性能。計算PSNR的前提條件是需知均方誤差MSE。2個m×n單色圖像I和K,如果一個與另外一個的噪聲近似,那么它們的均方誤差定義為

式中:MAXI為圖像點顏色的最大數值。

圖2 6種典型的高爐料面圖像

圖3 壓縮感知觀測圖像

圖4 重建得到的料面圖像
已知PSNR值越高,表明重建得到的圖像失真越小,即重建效果越好。圖4中對應6幅典型高爐料面圖像的重建效果PSNR如圖5所示。從圖5可以看出,6幅圖片的PSNR均位于20~30 dB,重建效果較好。
本文提出基于壓縮感知理論的高爐料面圖像重建算法,通過構建小波變換矩陣、隨機高斯矩陣直接獲取部分料面圖像信息,然后在外部計算機中利用低維度的觀測信號圖像和正交匹配追蹤算法重建原始料面圖像信息。仿真結果表明,本算法重建效果較好,具有一定的有效性和可應用性。在接下來的研究中,可以在滿足壓縮感知應用條件下構造更為合適的測量矩陣和稀疏變換矩陣,進一步使高爐料面圖像信息稀疏化,優化重構算法,提升圖像重建效果。