999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

耐熱鋼表面激光熔覆陶瓷工藝

2020-05-21 03:31:21劉立君王曉陸沈秀強宋袁曾

劉立君 王曉陸 沈秀強 宋袁曾

摘 要:耐熱鋼H13可用于制作飛機耐熱400~500℃工作溫度的結(jié)構(gòu)零件,而在飛機有些特殊工作環(huán)境下要求其零件表面同時具有耐磨性,因此針對耐熱鋼在特殊服役環(huán)境中磨損失效問題,利用小功率Nd:YAG激光器在H13鋼表面熔覆SiC陶瓷顆粒,通過金相顯微鏡、掃描電鏡及能譜分析儀研究不同工藝參數(shù)條件下熔覆層顯的宏觀形貌和微觀組織結(jié)構(gòu)。結(jié)果表明:熔覆試樣橫截面出現(xiàn)明顯的分層現(xiàn)象(熔覆層、熔合區(qū)、熱影響區(qū)、基體),熔覆層組織致密、無方向性,無明顯的氣孔裂紋;熔合區(qū)組織晶粒較為細小,以樹枝晶和等軸晶為主;粗大的柱狀晶組織沿H13鋼基體熔合線向熔合區(qū)生長。SiC陶瓷顆粒熔覆層、熔合區(qū)到基體SiK含量存在明顯的梯度,表明熔覆層與基體形成了良好的冶金結(jié)合,分析了耐熱鋼表面激光熔覆陶瓷的耐磨性。此外,由于SiC陶瓷顆粒硬而脆的特性以及與基體材料之間熱膨脹系數(shù)的差異,當掃描速度提高至40mm/min、60mm/min時熔覆層出現(xiàn)了貫穿性裂紋。上述研究成果為提高飛機耐熱零件表面耐磨性提供一定理論支持。

關(guān)鍵詞:飛機耐熱零件;激光熔覆陶瓷;耐磨性

DOI:10.15938/j.jhust.2020.01.019

中圖分類號: TG456-7

文獻標志碼: A

文章編號: 1007-2683(2020)01-0127-07

Abstract:Heat resistance steel type of H13 is used for the aircraft structure parts whose working temperature is 400~500℃Moreover, it is required to wear resistance for the parts in some special service environmentsIn order to solve the problem of wear failure in hot work dies during service, a low power laser type of Nd:YAG was used to cladding SiC ceramics on the surface of H13 steelThe macroscopic feature, microstructures and compositions were observed by the metalloscope, scanning electron microscope and energy depressive spectroscopyExperimental results indicated that that the cross sections of the cladding sample were markedly divisional(Clad Zone, Fusion zone, Heat-affected zone, Substrate Zone)The microstructure of cladding layer is non-directional and compact, without obvious crack and porosity and with good performanceThe homogeneous microstructure of bonding layer is dendrite and equiaxed grain with small size, and the massive columnar crystal grew from the bond line of H13 steel substrate to fusion zoneThe wear resistance of laser cladding ceramics on heat resistance steel surface is analyzed-Besides, a through crack appeared after the scanning speed up to 40mm/min、60mm/min on the cladding layer as the hard and brittle characteristic of SiC ceramics and the difference of thermal expansion coefficient between SiC ceramics and substrate; The above research results provide some theoretical support for improving the surface wear resistance of aircraft heat-resistant parts-

Keywords:heat-resistance parts ofaircraft; laser cladding ceramics; wear resistance

0 引 言

H13鋼具有優(yōu)良的耐磨性、抗熱疲勞、熱強度,除在壓鑄模、熱沖裁模、熱鍛模、熱擠壓模中得到了廣泛應(yīng)用,也在飛機、火箭等耐熱400~500℃工作溫度的結(jié)構(gòu)零件上應(yīng)用[1-2],有些飛機結(jié)構(gòu)零件除承受較大的沖擊載荷、工作介質(zhì)的沖蝕、高溫氧化以及劇烈的冷熱循環(huán)引起的熱應(yīng)力外,還承受機械磨損[3-4],提高耐熱鋼表面耐磨性能,在特定應(yīng)用環(huán)境具有迫切的需求[5]。

激光熔覆工藝作為一種表面改性技術(shù),其特點是將合金粉末等熔覆材料用不同的添加方式置于基體材料表面。利用高能密度的激光使基體材料與熔覆層材料一起熔化,熔覆材料與基體形成良好的冶金結(jié)合,提高了基體材料表面的硬度、耐磨性等特點[6-8]。因此,可利用激光熔覆技術(shù)在H13鋼基體材料表面熔覆涂層,在修復(fù)零件失效區(qū)域的同時提高基體材料的表面性能,延長零件的使用壽命,節(jié)約生產(chǎn)成本[9-10]。近年來激光仿生強化提高零件表面性能的研究引起了大量國內(nèi)學(xué)者的重視[11-13]。金屬零件表面仿生強化技術(shù)是從仿生角度出發(fā),在金屬制品表面形成抗疲勞、耐磨損的仿生結(jié)構(gòu),改善零件的耐磨損、抗熱疲勞及減粘性能,從而提高金屬零件的使用壽命[14-16]。

試樣腐蝕后在整個橫截面上能夠看到明顯的分區(qū),如圖10所示。從熔覆層表面到基體依次為SiC陶瓷顆粒熔覆區(qū)(clad zone,CZ),熔合區(qū)(fusion zone,F(xiàn)Z),熱影響區(qū)域(heat-affected zone,HAZ)及基體材料區(qū)(substrate zone, SZ)。各個分層區(qū)高倍下的顯微結(jié)構(gòu)如圖11所示。

從圖11(a)可以看出,合適的工藝參數(shù)條件下SiC陶瓷熔覆區(qū)的組織無方向性、比較致密,主要是由熔化的SiC陶瓷顆粒形成的硬質(zhì)相組成,沒有出現(xiàn)明顯的裂紋及氣孔等缺陷,組織性能良好。圖11(b)所示為熔合區(qū)位于陶瓷熔覆層與熱影響區(qū)之間,晶體主要以樹枝狀晶和等軸晶為主含有少量柱狀晶。在激光熔覆的冷卻過程中,基體的溫度較低,因此熔覆層的散熱方向是朝向基體,此時位于基體與熔覆層交界處的熔合區(qū)溫度梯度最大,最先發(fā)生晶粒形核。依附于熔合線形成的晶核沿散熱方向相反的方向生長,即垂直于熔合線向焊縫中心生長。

柱狀晶持續(xù)生長直到相互接觸時才停止。隨著晶粒的長大液/固界限向前推移,溫度梯度也隨之減小,由于激光熔覆冷卻速度較快,過冷度也較大,此時晶體的形核率較高,晶體來不及長大就發(fā)生凝固,因此熔合區(qū)的晶粒比較細小。

熔覆層界面的能譜分析如圖12所示。

圖12(a)SiK的質(zhì)量分數(shù)為5-45%,12(b)SiK的質(zhì)量分數(shù)為4-26%,可以發(fā)現(xiàn)結(jié)合層的Si含量要明顯少于熔覆層,并且遠大于基體材料中的含量(0-8%~1-20%)。圖12(c)更加明顯的反映了這一變化趨勢。分析認為,造成這一現(xiàn)象的原因是激光熔覆過程中液態(tài)的熔覆層材料與基體在冷卻凝固過程中發(fā)生了原子擴散,造成了熔覆層的稀釋,導(dǎo)致Si元素含量減少。Si元素含量的這種變化趨勢說明熔覆層與基體材料之間產(chǎn)生了良好的冶金結(jié)合,這是影響熔覆層質(zhì)量的重要因素。冶金結(jié)合質(zhì)量較差,則熔覆層易出現(xiàn)裂紋等缺陷,不能滿足基體材料修復(fù)性能的要求。3 結(jié) 論

1)當激光熔覆掃描速度提高至40mm/min、60mm/min時,在熔覆層的整個橫截面上出現(xiàn)了貫穿性裂紋,降低了熔覆層的性能。一方面是因為熱輸入減小,熔覆層成分不能均勻分布,與基體材料之間結(jié)合性較差;另一方面SiC陶瓷顆粒硬而脆,韌性較差與基體(H13鋼)的熱膨脹系數(shù)和收縮率不同,在熔池凝固時極易產(chǎn)生裂紋。

2)合適的工藝參數(shù)條件熔覆試樣橫截面上出現(xiàn)明顯的分區(qū):SiC陶瓷顆粒熔覆區(qū)、結(jié)合區(qū)、熱影響區(qū)域及基體材料區(qū)。熔覆區(qū)組織致密無明顯氣孔裂紋,性能良好;結(jié)合區(qū)晶體以樹枝狀晶和等軸晶為主,晶粒比較細小,熔合線處晶體主要是柱狀晶。

3)熔覆層、結(jié)合區(qū)、基體SiK的含量變化為熔覆層大于結(jié)合區(qū)、結(jié)合區(qū)大于基體,這種變化趨勢說明熔覆層結(jié)合區(qū)、基體具有良好的冶金結(jié)合。

參 考 文 獻:

[1] 趙昌盛, 居建村. 熱作模具鋼H13失效分析[J]. 模具制造, 2002(9):50.

ZHAO Changsheng, JU Jiancun. Failure Analysis of Hot Work Die Steel H13 [J]. Mold Manufacturing, 2002, 9(14): 50.

[2] KCHAOU M, ELLEUCH R, DESPLANQUES Y, et al. Failure Mechanisms of H13 Die on Relation to the Forging Process-A Case Study of Brass Gas Valves[J]. Engineering Failure Analysis, 2010, 17(2):403.

[3] GU J, LI J, CHEN Y. Microstructure and Strengthening-Toughening Mechanism of Nitrogen-Alloyed 4Cr5Mo2V Hot-Working Die Steel[J]. Metals-Open Access Metallurgy Journal, 2017, 7(8):310.

[4] 李映穎, 譚光宇, 陳友龍. 基于飛行數(shù)據(jù)的航空發(fā)動機健康狀況分析[J]. 哈爾濱理工大學(xué)學(xué)報, 2011, 16(5):43.

LI Yingying, TAN Guangyu, CHEN Youlong. Health Analysis of Aeroengine Based on Flight Data [J]. Journal of Harbin University of Science and Technology, 2011, 16(5): 43.

[5] KIM Y S,JOUN M S. Reason of Die Fracture in Hot Forging of Aluminum Fixed Scroll and Its Practical Measures[J]. Transactions of Materials Processing, 2017, 26.

[6] 李福泉, 高振增, 李俐群,等. TC4表面絲粉同步激光熔覆制備復(fù)合材料層的微觀組織和性能[J]. 稀有金屬材料與工程, 2017, 46(1):177.LI Fuquan, GAO Zhenzeng, LI Liqun, et al. Microstructure and Properties of Composite Layer Prepared by Simultaneous Laser Cladding of TC4 Surface Powder [J]. Rare Metal Materials and Engineering, 2017, 46(1): 177.

[7] 張堅, 吳文妮, 趙龍志. 激光熔覆研究現(xiàn)狀及發(fā)展趨勢[J]. 熱加工工藝, 2013, 42(6):131.ZHANG Jian, WU Wenni, ZHAO Longzhi. Current Status and Development Trend of Laser Cladding Research [J]. Hot Working Technology, 2013, 42(6): 131.

[8] 楊曉倩, 李亞江, 馬群雙, 等. 激光熔覆工藝研究現(xiàn)狀及發(fā)展[J]. 機械制造文摘(焊接分冊), 2015(1):30.YANG Xiaoqian, LI Yajiang, MA Qunshuang, et al. Research Status and Development of Laser Cladding Process [J]. Abstracts of Machinery Manufacturing(Welding Volume), 2015(1): 30.

[9] 葉宏, 雷臨蘋, 喻文新,等. H13鋼激光熔覆Co基涂層組織及熱疲勞性能[J]. 強激光與粒子束, 2017, 29(2):136.YE Hong, LEI Linping, YU Wenxin, et al. Microstructure and Thermal Fatigue Properties of Laser Cladding Co-based Coating on H13 Steel [J]. High Power Laser and Particle Beams, 2017, 29(2): 136.

[10]HEMMATI I, OCELK V, HOSSON J T M D. Effects of the Alloy Composition on Phase Constitution and Properties of Laser Deposited Ni-Cr-B-Si Coatings[J]. Physics Procedia, 2013, 41(1):302.

[11]于義濤. H13鋼激光仿生強化熱疲勞及磨損性能研究[D]. 哈爾濱:哈爾濱理工大學(xué),2016.

[12]ZHAO K P , LIU L J , ZHANG X C , et al. Local Laser Bionic Blocking Experimental Study of Hot Work Mould Surface Cracks[J]. Applied Mechanics and Materials, 2012(201/202):4.

[13]CUI W,BAI G, HONG Y E, et al. H13 Laser Bionic Coupling Processing and Wear-resistance Performance Research[J]. Journal of Chongqing University of Technology, 2018.

[14]李福泉, 王樹立, 陳彥賓, 等. Ti6Al4V表面激光熔覆生物陶瓷復(fù)合涂層研究[J]. 中國激光, 2015, 42(6):122.LI Fuquan, WANG Shuli, CHEN Yanbin, et al. Study on Ti6Al4V Surface Laser Cladding Bioceramic Composite Coating [J]. China Laser, 2015, 42(6): 122.

[15]HEMMATI I, OCELK V, Hosson J T M D. Effects of the Alloy Composition on Phase Constitution and Properties of Laser Deposited Ni-Cr-B-Si Coatings[J]. Physics Procedia, 2013, 41(1):302.

[16]XIE S, LI R, YUAN T, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics & Laser Technology, 2017,99(1):374.

[17]岳彩旭, 馬晶, 劉飛, 等. 模具鋼Cr12MoV精密硬態(tài)切削過程刀具磨損[J]. 哈爾濱理工大學(xué)學(xué)報, 2014(5):56.YUE Caixu, MA Jing, LIU Fei, et al. Tool Wear During Precision Hard Cutting of Die Steel Cr12MoV [J]. Journal of Harbin University of Science and Technology, 2014,19(5): 56.

[18]張藝, 馬志凱, 孫鉑, 等. 激光熔覆材料的研究現(xiàn)狀及發(fā)展[J]. 熱加工工藝, 2015(14):40.ZHANG Yi, MA Zhikai, SUN Platinum, et al. Research Status and Development of Laser Cladding Materials [J]. Hot Working Technology, 2015,44(14): 40.

[19]劉西洋, 孫鳳蓮, 王旭友, 等. NdYAG激光+CMT電弧復(fù)合熱源平焊工藝參數(shù)對焊縫成形的影響[J]. 哈爾濱理工大學(xué)學(xué)報, 2010, 15(6):107.LIU Xiyang, SUN Fenglian, WANG Xuyou, et al. Effect of Welding Parameters of Nd YAG Laser+CMT arc Composite Heat Source on Welding Seam Formation [J]. Journal of Harbin University of Science and Technology, 2010, 15(6): 107.

[20]劉立君, 姜亞青, 邸鐵男,等. 模具表面激光強化離焦量波動聲信號特征HHT分析[J]. 焊接學(xué)報, 2013, 34(9):51.LIU Lijun, JIANG Yabin, DI Tienan, et al. HHT Analysis of Acoustic Signal Characteristics of Laser-enhanced Defocus Amplitude Fluctuations on the Mold Surface [J]. Journal of Welding Technology, 2013, 34(9): 51.

[21]劉敬福, 李赫亮, 于小月,等. 掃描速度對45鋼表面Ni基TiC激光熔覆層性能的影響[J]. 材料保護, 2014, 47(6):69.LIU Jingfu, LI Heliang, YU Xiaoyue, et al. Effect of Scanning Speed on the Properties of Ni-based TiC Laser Cladding on the Surface of 45 Steel [J]. Materials Protection, 2014, 47(6): 69.

(編輯:溫澤宇)

主站蜘蛛池模板: 露脸一二三区国语对白| 国产中文一区二区苍井空| 亚洲AV人人澡人人双人| 欧美一级黄色影院| 精品三级在线| 久久人午夜亚洲精品无码区| 蜜臀AVWWW国产天堂| 欧美日韩成人在线观看| 一本二本三本不卡无码| 久久久久亚洲AV成人人电影软件| 欧美日韩在线第一页| 亚洲国产一区在线观看| 国产成人亚洲精品蜜芽影院| 日韩福利视频导航| 亚洲成a人片在线观看88| 国产无码性爱一区二区三区| 91网址在线播放| 91久久国产综合精品女同我| 国产污视频在线观看| 在线观看免费黄色网址| 黄色网址免费在线| 伊人天堂网| 欧美日韩中文国产va另类| 亚洲AⅤ波多系列中文字幕| 一级香蕉视频在线观看| 欧美一级高清片欧美国产欧美| 99精品福利视频| 国产成人8x视频一区二区| 亚洲天堂福利视频| 99无码中文字幕视频| 中国一级特黄大片在线观看| 91热爆在线| 熟女成人国产精品视频| 三级欧美在线| 国产伦精品一区二区三区视频优播| 国产精品亚欧美一区二区| 国产男女免费完整版视频| 91人人妻人人做人人爽男同| 国产成人无码Av在线播放无广告| 亚洲精品在线观看91| 激情在线网| 伊人久久福利中文字幕| 在线观看无码av五月花| 午夜不卡视频| 2020精品极品国产色在线观看| 国产精品国产主播在线观看| 热伊人99re久久精品最新地| 免费国产不卡午夜福在线观看| igao国产精品| 国产97公开成人免费视频| 99久久99视频| 亚洲天堂视频在线播放| 狠狠躁天天躁夜夜躁婷婷| 在线中文字幕网| 亚洲精品自拍区在线观看| 激情午夜婷婷| 一级做a爰片久久毛片毛片| 谁有在线观看日韩亚洲最新视频| 五月婷婷综合网| 99精品久久精品| 国产资源免费观看| 国产专区综合另类日韩一区 | 亚洲aaa视频| 青青青国产免费线在| 亚洲侵犯无码网址在线观看| 国产在线视频自拍| 国产制服丝袜91在线| 欧美在线伊人| 国产精品露脸视频| 2020国产免费久久精品99| 国产又爽又黄无遮挡免费观看| 精品久久蜜桃| 欧洲高清无码在线| 色婷婷电影网| 美女一区二区在线观看| 国产靠逼视频| 国产va欧美va在线观看| 亚洲区第一页| 国产va欧美va在线观看| 亚洲精品午夜天堂网页| 女高中生自慰污污网站| 日韩a级片视频|