999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

調和算子多項式廣義次譜的顯式上界

2020-04-18 06:18:46黃振明
關鍵詞:數理

黃振明

(蘇州市職業大學 數理部,江蘇 蘇州 215104)

1 Introduction and Statement of Result

Let Pt(x) be a polynomial of degree t (t ≥2)as Pt(x) = ptxt+ pt-1xt-1+ …+ p1x + p0,where pt= 1,pi≥0 (i = 0,1,…,t - 1)are real numbers.The following spectrum problem of polynomial of harmonic operator Pt(-Δ)has been extensively studied by many mathematical researchers:

and obtained an explicit inequality estimating the upper bound of the secondary spectrum in terms of the linear function of the principal one[1].

In this paper we further study a more general situation of Problem(1),that is the generalized problem of polynomial operator Pt(-Δ)

To our knowledge, the general case(3)has not been studied previously. For any positive integer t(t ≥2) in Problem(3), we established an explicit upper bound for the secondary spectrum in terms of the principal one. The inequality we gained is called universal inequality because it does not involve domain dependence.This proof is similar in spirit to that of Carston and Dietmar[2].Indeed,we have the following theorem after some complicated work.

Theorem 1 Let λ1,λ2be the principal and secondary spectrum of Problem(3).Then

2 Proof of Theorem 1

We multiply(3)by u,integrate by parts,use the boundary conditions and(5),this gives

thus we have

Using the definition of φkand(3),one obtains

and

Therefore,we have

On the other hand,using integration by parts,we obtain

which gives

Combining(7)with(9),yields

Lemma 1 Suppose that u is an eigenfunction of Problem (3)corresponding to the principal spectrumλ1with∫Ω|?u|2dx = 1.Then

Proof (a)Let us first prove the following inequality

This is done by mathematical induction. For s= 1, using integration by parts, Schwarz’s inequality and(5),meanwhile noting the boundary condition in(3),we have

so(11)is correct for s= 1.

Assume(11)is true for some fixed s= k - 1(k ≤t - 2).Then,using integration by parts,Schwarz’s inequality and the boundary condition again,we have

after simplified,it turns out

so the inequality(11)is true for s= k,and we are done.

Using(11)repeatedly to∫Ω||?1+su2dx,combining(6)we have

that completes the proof.

(b)Similarly,using(5),integration by parts,Schwarz’s inequality and Lemma1(a),we have

This finishes the proof of Lemma1(b).

Lemma 2 Let u be an eigenfunction of Problem(3)corresponding to the principal spectrumλ1,and φkbe as above.Then we have

Proof (a)Using integration by parts and the definition of the harmonic operator,we have

so Lemma 2(a)is proved.

(b)When r ≥1,using integration by parts,we have

so,we get

Using Lemma 2(a),we have

When r = 0,with the similar process,we obtain

thus

This finishes the proof of Lemma 2(b).

Lemma 3 For I,J defined as above,the following estimate holds

Proof Using Lemma 2(b)to I and the first term of J respectively,we have

and

Using Lemma 1(b),Lemma 2(b)and Lemma 1(a),we obtain

thereby we complete the proof of Lemma 3.

Lemma 4 Let φkand λ1be as above.Then

Proof Using the homogeneous boundary condition of φkand u, integration by parts, Lemma 2(b)and(5),we have

By Young’s inequality with ε,(12),Lemma 2(a)and Lemma 1(a),one gets

where ε >0 is an arbitrary constant.The right-hand side of(13)assumes its minimum at the point

at which we obtain the inequality

thus finishing the proof of Lemma 4.

Proof of Theorem 1 We rewrite(10)as

Lemma 4 can be read as

Therefore, substituting Lemma 3 and(15)into(14), we derive the inequality(4)in the Theorem 1 immediately after simplified.

猜你喜歡
數理
基于數理認知的數理邏輯類益智玩具設計研究
玩具世界(2024年2期)2024-05-07 08:15:50
萊州市第二實驗小學 應用“德融數理” 打造“行知樂園”
中國德育(2022年12期)2022-08-22 06:18:14
踐行“德融數理” 打造“行知樂園”
中國德育(2022年12期)2022-08-22 06:17:24
循序力行,讓“德融數理”落地生根
中國德育(2022年12期)2022-08-22 06:17:16
數理:它是幾號柜
孩子(2020年9期)2020-09-16 06:29:36
數理:多少人吃飯
孩子(2019年9期)2019-11-07 01:35:49
紹興文理學院數理信息學院
柳宗悅民藝思想中的“數理”觀
物之數理:高中物理提升學生數學解釋素養
最天然呆筆記 誰說數理就一定枯燥艱深?
主站蜘蛛池模板: 9丨情侣偷在线精品国产| 久久中文电影| 亚洲日本中文字幕乱码中文| 国产尹人香蕉综合在线电影| 国产乱人免费视频| 亚洲中文在线看视频一区| 欧美精品高清| 国产成人综合网| 国产福利在线观看精品| 亚洲第一区在线| 蜜桃视频一区二区| 欧美国产成人在线| 香蕉蕉亚亚洲aav综合| 欧美日韩福利| 国产成人精品视频一区视频二区| 激情影院内射美女| 日本高清有码人妻| 亚洲女同一区二区| 国产亚洲精品自在线| 99资源在线| 久久永久免费人妻精品| 日韩毛片基地| 国产精品丝袜在线| 国产精品自在自线免费观看| 狠狠色噜噜狠狠狠狠色综合久 | 久久久久青草大香线综合精品| 天堂成人在线视频| 亚洲午夜久久久精品电影院| 免费jjzz在在线播放国产| 亚洲第一成年人网站| 国产日本视频91| 小说 亚洲 无码 精品| 久久99热66这里只有精品一| 本亚洲精品网站| 亚洲第一视频区| 91av成人日本不卡三区| 亚洲第一视频网| h网站在线播放| 国产嫖妓91东北老熟女久久一| 国产91在线免费视频| 大香伊人久久| 精品久久久久无码| 午夜免费视频网站| 欧美另类第一页| 国产成人亚洲欧美激情| 99国产精品国产| 91精品免费久久久| 国产精品亚洲天堂| 99久久性生片| 国产日本欧美亚洲精品视| 日本亚洲欧美在线| 国产一区在线视频观看| 亚洲人成人伊人成综合网无码| 亚洲中文字幕无码mv| 久久亚洲国产最新网站| 一本大道香蕉久中文在线播放| 亚洲看片网| 视频国产精品丝袜第一页| 久久国产精品影院| 国产男女免费视频| 色播五月婷婷| 99这里精品| 伊人色在线视频| 一区二区三区精品视频在线观看| 在线观看免费AV网| 波多野结衣视频网站| 亚洲不卡无码av中文字幕| 九九视频在线免费观看| 国产精品无码AⅤ在线观看播放| www.亚洲国产| 在线高清亚洲精品二区| 国产人成在线视频| 99热国产在线精品99| 国产精品欧美亚洲韩国日本不卡| 亚洲最黄视频| 国产成人福利在线视老湿机| 91无码人妻精品一区| 国产精品林美惠子在线观看| 亚洲精品色AV无码看| 国产黑人在线| 国产欧美日韩va| 久久精品嫩草研究院|