尹海燕
【摘 要】新的高中數學教學標準對數學概念的教學提出了新的要求。期望教師能夠在整個教學過程中整合關鍵的數學概念,以便學生更好地理解和掌握它們。數學概念本身反映了現實世界中空間的形式和數量之間的關系,并反映了數學的本質。因此,了解中學數學教學中的概念教學是一項主要任務。學習是解決問題的過程,學生掌握好基礎數學概念也有助于數學問題的解決。
【關鍵詞】高中數學;概念訓練
數學概念是數學研究的起點。加強學生對數學概念的理解,有助于學生理解基礎知識,學生通過概念的學習,可以提高對數學思想方法的領悟能力,此外還可培養多種能力,比如數學語言能力、歸納能力等。因此,概念學習對于學生來說尤為重要。從教學現狀來看,在高中數學教學中開展深度的概念教學設計,發展學生的認知能力是比較困難的,因此概念教學研究是高中數學教學中最重要的主題之一。
1.研究并了解數學概念的形成過程
在教授數學概念時,教師通常會說“一個定義,三個重點”。在教學中,教師要注重數學概念引入的生動性,通過帶領學生探索數學概念形成的過程,挖掘數學概念的內涵和外延;讓學生更好地理解數學概念的形成,以便學生不僅可以記住該概念,而且可以理解該概念的本質。因此,教師必須創造教學條件,使學生能夠體驗研究數學概念的過程并理解數學概念的形成。
例如,為了教授橢圓的概念,老師可以創建以下教學活動:在每節課之前,讓每個學生準備一根弦(沒有彈性)。在課程中,將學生分組并執行以下操作。在一塊硬紙板上取兩個固定點,并放一個細的繩子,將繩子的兩端分別固定在兩個固定點上,然后用筆尖將繩索拉緊,然后筆尖在硬紙板上緩慢移動一周。此時,讓學生觀察在紙板上獲得的圖片(即橢圓形),并且學生可能會在操作過程中經歷形成橢圓形概念的過程。一旦學生接受了橢圓的概念,老師可能會進一步提出以下問題:如果調整了兩個固定點的相對位置,并且弦的長度保持不變,數字是否仍會是橢圓?如果是這樣,當前的橢圓形狀與原始形狀相比如何?上面列出的問題的設計可以鼓勵學生深入思考并發現橢圓概念的基本特征。學生已經經歷了探索橢圓定義的過程,并且實際上已經意識到數學概念的形成,他們的理解將更加準確和深入,從而為進一步研究橢圓的幾何特性奠定了基礎。
2.介紹有實際問題的概念。
數學概念源于實踐并服務于實踐。通過從實際問題中引入概念,使抽象的數學概念接近生活,這能使學生了解數學概念的真正含義并提高他們的認識。例如,在講解“彼此垂直的兩個平面”可以從教室內部的一堵墻與地面交叉且垂直的實際問題中引入。另一個例子是如何選擇投放廣告,相關的數學問題是“對單個隨機變量的期望”。可以引入教學實例:考慮到下雨的可能性以及在超市內投放廣告造成的相應損失或收益,確定是否在該區域投放廣告。
3.充分利用學生的已有知識經驗
教師可以借助學生獲得的知識和經驗來幫助學生引入新概念。例如,在講授“不同平面之間的距離”的概念時,學生可以復習回顧所學到的有關距離的概念,例如兩點之間的距離,點與直線之間的距離以及兩條平行線之間的距離,以便學生可以理解新概念,在此基礎上,自然得出了“不同平面之間的距離”的概念。通過知識的回顧,注重概念的引入,可以激發學生的學習熱情,并培養學生的發現和猜測精神。
4.在進行比較教學時,讓學生理解概念的本質
高中數學教科書中有許多數學概念很容易讓學生混淆,教師可以使用對比理解的方法來幫助學生理解每個數學概念的本質,幫助學生更好地區分并靈活地使用它們。
例如指數函數和冪函數,充分必要條件,獨立事件和互斥事件等,這些是學生在學習時比較容易混淆的概念。為了更好地便于學生理解和掌握概念,教師可以鼓勵學生通過相關概念進行比較學習。教師可以在表中列出概念之間的異同,以便學生識別各自的特征和本質。一旦學生能夠很好地區分這些概念,教師應幫助學生使用這些概念來解決問題,以便學生能夠真正理解這些概念。
5.提煉數學概念的應用
在這一階段,中學數學教學仍沿用傳統的教學方法,老師作為教學過程的關鍵要素,在數學課上向學生教授基礎的數學公式,數學定理,基本的解決問題的技術和計算過程。課后,給學生一些練習以鞏固概念。在整個教學過程中,老師沒有充分認識到數學概念的重要性。如果學生不能真正理解這些概念,數學教學很難達到預期的學習效果。隨著信息技術的飛速發展和全國范圍內新課程改革的推進,社會對人才的要求越來越高,解決數學問題的能力對于學生的發展也至關重要,對于學習大多數自然知識也是必不可少的。在《高中數學》教科書中,概念,規則和公式的大多數擴展和派生都是根據特殊規律到一般規律進行的。在課堂上,教師在概括概念知識時,可以將不同級別的相似內容集成在一起以執行整個過程,提煉數學概念的應用,以發展的思維能力,
6.重視數學的文化價值,提高學生的文化素養
數學是人類文化的重要組成部分,是人類社會進步的產物。在教學過程中教師要注重數學概念引入的生動性;教師可以適當講解與數學概念出現有關的歷史事件和人文故事,這樣不僅可以激發學生的學習興趣,拓寬視野,了解該概念的社會歷史背景,而且可以逐步提高學生的文化素養和教育水平。使學生養成理性思考的習慣,以尋求真理,推理,批評和質疑,并堅持不懈地追求真理。
例如,在分析幾何學知識時,學生可以在上課前和課后收集與幾何學發展有關的信息。比如,您可以向學生介紹笛卡爾作為分析幾何學的創始人,建立了笛卡爾坐標系,通過適當的引入數學概念的背景知識,這樣,學生不僅可以加深對數學概念的理解,更能讓學生在學習新知識時充滿對研究人員的尊重和期望。有了這種思維方式,學生將能夠在高中時很好地學習數學。
簡而言之,教師要抓好概念教學,教師在概念教學過程中能充分地培養學生多方面的能力。比如,發展學生的數學語言能力、分析探究能力和歸納能力等;同時可以讓學生領悟數學的思想方法,比如,類比思想、數形結合思想、化歸思想等。教師要幫助學生在學習概念和應用概念解決問題時找到知識來源方法,以類比的方式感知學生的問題和發展學生的推理能力,以引導學生思考,增加學生的學習興趣和解決數學問題的能力。
參考文獻:
[1]李文婷. 高中數學概念教學策略研究[C]. 教育部基礎教育課程改革研究中心.2018年“提升課堂教學有效性的途徑研究”研討會論文集.教育部基礎教育課程改革研究中心:教育部基礎教育課程改革研究中心,2018:209-210.
[2]許佳蕾. 基于能力導向的高中數學概念教學研究[D].福建師范大學,2018.
(作者單位:湖南省婁底市漣源市第四中學)