999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

RESEARCH ANNOUNCEMENTS ON“ESTIMATES OF DIRICHLET EIGENVALUES FOR DEGENERATEμ-LAPLACE OPERATOR”

2020-03-14 09:07:26CHENHuaCHENHonggeLIJinning
數學雜志 2020年2期

CHEN Hua,CHEN Hong-ge,LI Jin-ning

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

1 Introduction and Main Results

For n≥2,we consider the following Dirichlet eigenvalue problem

on a bounded open domain??Rn,with smooth boundary??,whereis a degenerate elliptic operator generated by a system of real vector fields X=(X1,X2,···,Xn),namely,

We assume that the system of real vector fields X=(X1,X2,···,Xn)is defined in Rnby Xj=μj(x)?xj,whereμ1,···,μnare real continuous nonnegative functions in Rnsatisfying following assumptions:

(H1)μ1=1,andμj(x)=μj(x1,···,xj?1)for j=2,···,n.

(H2)For each j=1,···,n,μj∈C1(RnΠ),where

(H3)μj(x)>0 and xk(?xkμj)(x)≥0 for all x∈RnΠ,1≤k≤j?1,j=2,...,n.Furthermore,μj(x1,···,?xk,···,xj?1)=μj(x1,···,xk,···,xj?1)for all 1≤k≤j?1,j=2,···,n.

(H4)There exists a constantσj,k≥0 such thatholds for all 1≤k≤j?1,j=2,···,n.

Then,we define some positive constantsε1,...,εnas

and an index Q as

We remark that assumption(H1)allows us to write the operatorin the form=Recently,Kogoj and Lanconelli in[3]studied such degenerate elliptic operators under the following additional assumption:

(H6)There exists a group of dilations(δt)t>0,

with 1=α1≤ α2≤ ···≤ αn such thatμi isδt homogeneous of degreeαi?1,i.e.,

We next introduce the following weighted Sobolev spacesL2(Rn);j=1,2,···,n}associated with the real vector fields X=(X1,X2,···,Xn),thenis a Hilbert space endowed with normNow let?be a bounded open domain in Rnwith smooth boundary such thatwe denote bythe closure ofwith respect to the normWe know thatis a Hilbert space as well.

In this paper,the Dirichlet eigenvalue problem(1.1)of degenerate elliptic operator?will be considered in the weak sense innamely,

Based on assumptions(H1)–(H5)above,we can show that the Dirichlet eigenvalue problem(1.6)has a sequence of discrete eigenvalueswhich satisfy 0<λ1≤ λ2≤···≤ λk≤ ···andλk→+∞as k→+∞.

By using the regularity results of Franchi and Lanconelli[2]we can prove that the problem(1.6)has discrete Dirichlet eigenvalues.Then,by using the process of refinement in Li-Yau[4],we obtain an explicit lower bound estimates of Dirichlet eigenvaluesλkas follows.

Theorem 1.1Let X=(X1,···,Xn)be real continuous vector fields defined in Rnand satisfy assumptions(H1)–(H5).Assume that?is a bounded open domain in Rnwith smooth boundary such thatIf we denote byλkthe kthDirichlet eigenvalue of operator?on?,then for any k≥1,we have

where Q is defined by(1.4)andandΓ(x)is the Gamma function,|?|is the n-dimensional Lebesgue measure of?and C=C(X,?)is a positive constant.

Remark 1Sincethen Theorem 1.1 implies that the kthDirichlet eigenvalueλksatisfiesfor all k≥1.

Remark 2In general,for degenerate case we haveIf Q=n,the operator will be non-degenerate and the positive constant C can be replaced bythus estimate(1.7)will be the generalization as the Li-Yau’s lower bound estimate in[4].

Moreover,if the vector fields satisfy assumption(H6),then we have the following sharper lower bounds.

Theorem 1.2Let X=(X1,···,Xn)be real continuous vector fields defined in Rnand satisfy assumptions(H1)–(H3)and(H6).Assume that?is a bounded open domain in Rnwith smooth boundary such thatDenote byλkthe kthDirichlet eigenvalue of operator?on?,andis the homogeneous dimension of Rnwith respect to(δt)t>0.Then for any k≥1,we have

Remark 3If the vector fields admit the homogeneous structure assumptions(H1)–(H3)and(H6),then assumptions(H4)and(H5)will be also satisfied.But we cannot deduce assumption(H6)from assumptions(H1)–(H5),for example,X=(?x1,?x2,(|x1|α+|x2|β)?x3)withα>β>0.

Remark 4If the vector fields admit the homogeneous structure assumptions(H1)–(H3)and(H6),then the lower bounds in(1.8)is sharper than(1.7)in the sense of growth order.

Furthermore, by the same condition in Krger [5], we obtain an upper bound for the Dirichlet eigenvalues of operator ?.

Theorem 1.3Let X = (X1,...,Xn) be real continuous vector fields defined in Rnand satisfy assumptions (H1)–(H5).Suppose that ? is a bounded open domain in Rnwith smooth boundary ?? such thatMoreover, we assume that there exists a constant C0> 0 such that the measure of inner neighbourhood of the boundarysatisfies thatfor anywhereis the distance function and |?| is the n-dimensional Lebesgue measure of ?.Denote by λkthe kthDirichlet eigenvalue of operator ?μon ?.Then for any k ≥, we have

Remark 5For a bounded domain ?, if the (n ? 1)-dimensional Lebesgue measure of ?? is bounded, thenThus the condition in Theorem 1.3 holds for some positive constant C0.

The details of proofs for Theorem 1.1, Theorem 1.2 and Theorem 1.3 have been given by [1].

主站蜘蛛池模板: 日本午夜影院| 欧美人人干| 日本精品αv中文字幕| 欧美一区二区福利视频| 亚洲欧美色中文字幕| 欧美在线精品一区二区三区| 四虎在线观看视频高清无码| 蜜芽国产尤物av尤物在线看| 久久国产精品嫖妓| 久久影院一区二区h| 露脸国产精品自产在线播| 欧美不卡视频一区发布| 国产欧美日韩免费| 国产成人综合欧美精品久久| 欧美精品在线看| 国产91色| 久久久久久久97| 欧美高清三区| 四虎国产在线观看| 狠狠亚洲五月天| 国产黄色视频综合| 亚洲AⅤ永久无码精品毛片| 亚洲AV电影不卡在线观看| 久久这里只精品国产99热8| swag国产精品| 91精品国产综合久久香蕉922| 亚洲精品天堂自在久久77| 成人中文在线| 亚洲天堂精品视频| 毛片视频网| 一级看片免费视频| 欧美国产日韩在线播放| 日韩人妻少妇一区二区| 99精品一区二区免费视频| 日韩精品久久无码中文字幕色欲| AV不卡国产在线观看| 2024av在线无码中文最新| 1024国产在线| 亚洲女同欧美在线| 婷婷成人综合| 伊人久久精品无码麻豆精品| 五月婷婷综合网| 日本国产在线| 国产三级成人| 国产成人永久免费视频| 亚洲精品国产日韩无码AV永久免费网| 伊人色天堂| 亚洲综合片| 日韩成人午夜| 人人爽人人爽人人片| 亚洲色大成网站www国产| 国内精品视频区在线2021| 午夜精品国产自在| 国产成人精品视频一区二区电影| 久草性视频| a级毛片免费播放| 免费一级全黄少妇性色生活片| 欧美精品成人| 欧美曰批视频免费播放免费| 亚洲欧美成人网| 男女精品视频| 国产一区二区色淫影院| 国产精品天干天干在线观看| 国产一区在线视频观看| 亚洲性网站| 国语少妇高潮| 亚洲天堂网在线观看视频| 99精品福利视频| 国产男人的天堂| 久久精品国产一区二区小说| 最新国产你懂的在线网址| 欧美成人一级| 国产主播在线观看| 亚洲美女一级毛片| 国产九九精品视频| 亚洲综合天堂网| 在线播放精品一区二区啪视频| 麻豆国产在线观看一区二区| 亚洲精选高清无码| 午夜福利免费视频| 91人妻日韩人妻无码专区精品| 国产爽妇精品|