申遠航 黃曉靈 高利偉 呂航 鄭業魯 王眾



摘要:【目的】利用Meta分析對有關益生菌對斷奶仔豬小腸形態的影響試驗進行評價,為解決仔豬生產過程中的腸道健康問題提供參考依據。【方法】基于中國知網(CNKI)、萬方數據(Wanfang Data)、CQVIP、Web of Science及Science-Direct等數據庫,全面檢索收集益生菌對斷奶仔豬小腸形態影響的研究文獻,采用RevMan 5.3進行Meta分析。【結果】最終納入22篇研究文獻,試驗組和對照組均為137頭仔豬,試驗組以益生菌作為添加物,對照組為空白。Meta分析結果表明:益生菌組對斷奶仔豬十二指腸絨毛高度的影響顯著優于空白組(P=0.01,SMD=0.81,95% CI=0.19~1.44),對隱窩深度的影響顯著低于空白組(P=0.0008,SMD=-0.74,95% CI=-1.18~-0.31);益生菌組對空腸絨毛高度的影響顯著優于空白組(P<0.0001,SMD=0.97,95% CI=0.49~1.46),對隱窩深度的影響差異不顯著(P=0.58,SMD=-0.12,95% CI= -0.56~0.31);益生菌組對回腸絨毛高度的影響顯著優于空白組(P=0.0003,SMD=1.20,95% CI=0.55~1.85),對隱窩深度的影響差異不顯著(P=0.09,SMD=-0.58,95% CI=-1.25~0.10)。根據益生菌的菌屬進行亞組分析,結果顯示,酵母菌屬組和復合菌株組對十二指腸、空腸的絨毛高度無影響,乳桿菌屬組和腸球菌屬組可顯著提高十二指腸、空腸、回腸的絨毛高度。敏感性分析結果較穩健;發表偏倚結果顯示有一定的發表偏倚,但偏倚程度不明顯。【結論】益生菌通過顯著提高十二指腸、空腸和回腸的絨毛高度及降低十二指腸隱窩深度,以改善斷奶仔豬小腸的形態結構,其中,乳桿菌屬組和腸球菌屬組對絨毛高度的影響較顯著,復合益生菌對十二指腸隱窩深度的影響顯著。即益生菌在保護小腸腸道健康方面具有重要潛力,但需要注意同屬不同菌種間的差異。
關鍵詞: 斷奶仔豬;益生菌;小腸形態;絨毛高度;隱窩深度;Meta分析
中圖分類號: S816.73? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)10-2546-11
Effects of probiotics on small intestine morphology of weaned piglets by Meta analysis
SHEN Yuan-hang, HUANG Xiao-ling, GAO Li-wei, LYU Hang,
ZHENG Ye-lu*, WANG Zhong
(Guangdong Guangken Animal Husbandry Engineering Research Institute, Guangzhou? 510000, China)
Abstract:【Objective】Meta analysis was used to evaluate the effects of probiotics on intestinal morphology of weaned piglets, so as to provide reference for solving the intestinal health problems in the production process of piglets.【Method】Based on databases like CNKI,Wanfang Data,CQVIP,Web of Science and ScienceDirect,? the literature on the effects of probiotics on the small intestine morphology of weaned piglets were comprehensively collected, and? Review Manager 5.3 software was used for Meta analysis. 【Result】A total of 22 studies were included. The test group consisted of 137 piglets and the control group consisted of 137 piglets. The test group was supplemented with probiotics and the control group was blank.The Meta analysis results showed that the effects of duodenal villus height in the probiotic group was significantly better than that in the blank control group(P=0.01, SMD=0.81,95% CI=0.19-1.44), and the crypt depth was significantly lower than that in the blank control group(P=0.0008, SMD=-0.74,95% CI=-1.18- -0.31). The effects on the villi height of jejunum was significantly better than that of the blank control group(P<0.0001, SMD=0.97, 95% CI=0.49-1.46), and the difference in crypt depth effect was not significant(P=0.58, SMD=-0.12,95% CI=-0.56-0.31); the effect of the probiotic group on the villi height of ileum was significantly better than that of the blank control group(P=0.0003,SMD=1.20,95% CI=0.55-1.85), and there was no significant difference in the effect of crypt depth (P=0.09, SMD= -0.58,95% CI=-1.25-0.10). According to the subgroup analysis of the probiotic bacteria, the results showed that the yeast group and the compound bacteria group had no effect on the height of? duodenum and jejunum villi. The Lactobacillus group and the Enterococcus group could significantly improve the height of duodenum, jejunum and ileum villi. The results of the sensitivity analysis were relatively robust. The results of publication bias showed a certain degree of publication bias, but the degree of bias was not large. 【Conclusion】Probiotics can significantly increase the villi height of the small intestine(duodenum, jejunum, ileum) and reduce duodenal crypt depth in weaned piglets to improve the morphological structure of the small intestine of weaned piglets. Lactobacillus group and the Enterococcus group have significant effects on the height of the villi, and the composite strain has significant effect on the duodenal crypt depth. Probiotics have important potential in protecting the health of the small intestine, but it is necessary to pay attention to the differences between different species of the same genus.
Key words: weaned piglets; probiotics; small intestine morphology; villus height; crypt depth; Meta analysis
Foundation item: National Key Research and Development Program of China(2018YFF0213500)
0 引言
【研究意義】斷奶是仔豬生命周期中的一項重要事件。飼糧、飼養人員及飼養環境等因素改變造成的多重應激,通常致使仔豬腸道的功能和結構發生改變,引發腸道炎癥反應,損害腸道絨毛結構(Spreeuwenberg et al.,2001;Pié et al.,2004),進而引起腸黏膜受損及菌群失調(Fouhse et al.,2016;Gresse et al.,2017),臨床上則表現為腹瀉。使用抗生素和免疫方式雖然能有效預防仔豬腹瀉的發生,但同時存在諸多弊端,為了保證食品安全,符合綠色生產的理念,眾多替代抗生素添加劑已廣泛應用于生豬養殖業,包括有機酸、益生菌、精油、中藥及植物提取物等(Heo et al.,2013;Sezen,2013),其中又以益生菌應用最廣泛。目前,有關益生菌對斷奶仔豬腸道形態的影響尚存在爭議,因此有必要進一步明確益生菌對斷奶仔豬小腸形態影響的作用機理,為斷奶仔豬養殖生產提供科學依據。【前人研究進展】益生菌是一類對宿主有益的活性微生物統稱,通常具有重建微生物群平衡、預防病原菌感染及增強腸道屏障等功能(Scharek-Tedin et al.,2015;Yang et al.,2016)。早在1999年6月我國農業部第105號文件發布的《允許使用的飼料添加劑品種目錄》中就收錄了12種微生物飼料添加劑,2006年我國農業部658號公告《飼料添加劑品種目錄(2006)》中規定在飼料添加劑中可用的微生物增至16種,至2014年施行的《飼料添加劑品種目錄(2013)》中可用于養殖動物生產的微生物已達30種。已有研究表明,投喂適量益生菌對斷奶仔豬的小腸絨毛長度、隱窩深度、產黏液細胞數量和黏液層厚度均有積極影響(Le et al.,2010),且益生菌數量的增加可抑制有害菌在腸道內黏附(Herias et al.,1999)。此外,益生菌可發酵腸道內的碳水化合物產生短鏈脂肪酸,如乳酸和醋酸,導致腸道pH降低,而致使有害菌不耐受(Bajagai et al.,2016),并產生抗氧化劑、抗菌肽(防御素)、大黃酸及細菌素等抑菌物質(Eswara et al.,2010;Hou et al.,2016),在斷奶仔豬生產上發揮著重要作用。蘇琴(2015)研究證實,以1%或2%復合益生菌添加至斷奶仔豬的飼料中,其平均日增重較空白對照組斷奶仔豬提高36.46%;洪偉彬(2016)研究表明,添加植物乳桿菌和羅伊氏乳桿菌可提高斷奶仔豬腸道黏膜免疫球蛋白A的含量,進而提高其免疫力。但由于市售益生菌的組成及質量參差不齊,導致其研究結論尚未得到廣泛認可。部分學者認為益生菌對斷奶仔豬日增重無顯著影響(周盟等,2013),或含有不確定因子會影響仔豬生長性能(貢筱等,2014)。【本研究切入點】Meta分析的主要目的是增加統計檢驗效能,對多個同類獨立研究的結果進行匯總與合并分析,以達到增大樣本含量、提高檢驗效能的效果,在畜牧獸醫學上已有應用(楊健等,2016;牛志偉等,2017),但至今未見采用Meta分析評價益生菌對斷奶仔豬小腸形態影響的報道。【擬解決的關鍵問題】基于中國知網(CNKI)、萬方數據(Wanfang Data)、CQVIP、Web of Science及ScienceDirect等數據庫已發表的文獻信息資源,利用Meta分析對有關益生菌對斷奶仔豬小腸形態的影響試驗進行評價,以期為解決仔豬生產過程中的腸道健康問題提供參考依據。
1 材料與方法
1. 1 檢索策略
計算機檢索中國知網(CNKI)、萬方數據(Wanfang Data)、CQVIP、Web of Science及ScienceDirect等數據庫,檢索年限為建庫至今。中文檢索關鍵詞包括斷奶仔豬、仔豬、益生菌和小腸形態;英文檢索關鍵詞包括Weaned Piglets、Piglets、Probiotics和Small intestine morphology。根據不同數據庫的特征,分別采用主題詞與自由詞相結合的方式進行文獻收集。
1. 2 文獻的納入和排除標準
研究類型:已發表的隨機對照試驗;研究對象:斷奶仔豬,必須健康無疾病;干預措施:飼料中添加益生菌并以空白為對照;結局指標:十二指腸絨毛高度及隱窩深度,空腸絨毛高度及隱窩深度,回腸絨毛高度及隱窩深度;納入文獻中給出結局指標的平均值和標準差(Standard deviation,SD)或標準誤(Standard error of mean,SE);文獻語言為中文或英文。有以下情況應給予排除:①重復發表和質量較低的文獻;②研究對象不是斷奶仔豬的文獻;③綜述類文章、無空白對照組的文獻;④數據不全或數據明顯有誤的文獻;⑤試驗組干預措施為益生菌以外的治療方法或益生菌與化學藥物聯合用藥的文獻。
1. 3 數據資料提取
從文獻中提取以下數據:①題目,第一作者,發表年份;②研究對象,試驗組動物總數,對照組動物總數,給藥信息(途徑、益生菌菌株),飼養天數;③小腸道形態:十二指腸絨毛高度及隱窩深度,空腸絨毛高度及隱窩深度,回腸絨毛高度及隱窩深度。
1. 4 統計分析
運用RevMan 5.3進行數據分析并繪制相關圖表,由于所納入文獻結局指標為連續型變量,且研究間測量方法、時間及表達單位不完全一致,故選擇標準化均數差(Standardized mean difference,SDM)為效應尺度。考慮到多個研究間潛在的臨床或方法學異質性,故使用隨機效應模型(Randomized effect model,REM)。該模型會對合并效應進行更保守地估計,如文獻中未提供均值和標準差,則根據標準誤差、95%可信區間(Confidence interval,CI)或其他統計指標進行計算。為了評估異質性,使用I2 統計量和卡方檢驗,概率值P<0.05即認為顯著;同時進行亞組分析,分析益生菌不同菌屬對斷奶仔豬小腸形態的影響;并對分析結果進行敏感性分析,評價結果穩定性及探究異質性來源,以漏斗圖檢驗其發表偏倚程度。
2 結果與分析
2. 1 文獻檢索與篩選結果
按照檢索策略共獲得文獻1545篇,閱讀文獻題目及摘要,排除非臨床研究、綜述及重復發表的文獻1374篇;再閱讀全文,排除未對豬性能進行研究而以分離或選擇具有潛在益生菌活性菌株的文獻,排除對照組不是空白組的文獻,又排除不符合納入標準的文獻149篇,最終納入文獻22篇(表1)。其中,有2篇是使用復合益生菌(2種或2種以上菌屬混合,由酵母菌、屎腸球菌、地衣芽孢桿菌及枯草芽孢桿菌混合而成)、有7篇使用酵母菌屬,有7篇使用乳桿菌屬,有6篇使用腸球菌屬。
2. 2 納入文獻的基本特征
研究對象為斷奶仔豬,所提取的樣本數量為被屠宰采樣仔豬頭數(表1),試驗組和對照組各137頭。試驗組均將益生菌拌入飼糧中,分別為復合菌株、酵母菌屬、乳桿菌屬和腸球菌屬;對照組無任何添加物。
2. 3 益生菌對斷奶仔豬十二指腸絨毛高度影響的Meta分析結果
共有17篇文獻研究了益生菌對斷奶仔豬十二指腸絨毛高度的影響(圖1),包括206頭斷奶仔豬,Meta分析發現益生菌組與空白組間存在顯著的統計學差異(P=0.01,SMD=0.81,95% CI=0.19~1.44)。亞組分析結果表明,酵母菌屬組與空白組間無統計學差異(P=0.73,SMD=0.23,95% CI=-1.10~1.57),復合菌株組與空白組間也無統計學差異(P=0.66,SMD=0.59,95% CI=-2.02~3.20),乳桿菌屬組與空白組間存在顯著的統計學差異(P=0.02,SMD=1.53,95% CI=0.23~2.84),腸球菌屬組與空白組間也存在顯著的統計學差異(P=0.03,SMD=0.91,95% CI=0.10~1.72)。
2. 4 益生菌對斷奶仔豬十二指腸隱窩深度影響的Meta分析結果
共有17篇文獻研究了益生菌對斷奶仔豬十二指腸隱窩深度的影響(圖2),包括206頭斷奶仔豬,Meta分析結果發現益生菌組與空白組間存在顯著的統計學差異(P=0.0008,SMD=-0.74,95% CI=-1.18~ -0.31)。亞組分析結果表明,酵母菌屬組與空白組間存在顯著的統計學差異(P=0.005,SMD=-0.82,95% CI=-1.39~-0.25),復合菌株組與空白組間也存在顯著的統計學差異(P<0.00001,SMD=-2.66,95% CI= -3.77~-1.56),乳桿菌屬組與空白組間無統計學差異(P=0.07,SMD=-0.57,95% CI=-1.18~0.04),腸球菌屬組與空白組間也無統計學差異(P=0.96,SMD= -0.02,95% CI=-0.64~0.61)。
2. 5 益生菌對斷奶仔豬空腸絨毛高度影響的Meta分析結果
共有18篇文獻研究了益生菌對斷奶仔豬空腸絨毛高度的影響(圖3),包括214頭斷奶仔豬,Meta分析結果顯示益生菌組與空白組間存在顯著的統計學差異(P<0.0001,SMD=0.97,95% CI=0.49~1.46)。亞組分析結果表明,酵母菌屬組與空白組間無統計學差異(P=0.16,SMD=1.08,95% CI=-0.43~2.60),乳桿菌屬組與空白組間存在顯著的統計學差異(P=0.002,SMD=1.18,95% CI=0.42~1.93),腸球菌屬組與空白組間也存在顯著的統計學差異(P=0.03,SMD=0.61,95% CI=0.07~1.15)。
2. 6 益生菌對斷奶仔豬空腸隱窩深度影響的Meta分析結果
共有18篇文獻研究了益生菌對斷奶仔豬空腸隱窩深度的影響(圖4),包括214頭斷奶仔豬,Meta分析結果顯示益生菌組與空白組間無統計學差異(P=0.58,SMD=-0.12,95% CI=-0.56~0.31)。亞組分析結果表明,酵母菌屬組與空白組間無統計學差異(P=0.24,SMD=-0.48,95% CI=-1.29~0.33),乳桿菌屬組與空白組間無統計學差異(P=0.40,SMD=-0.33,95% CI=-1.10~0.44),腸球菌屬組與空白組間也無統計學差異(P=0.11,SMD=0.43,95% CI=-0.10~0.95)。
2. 7 益生菌對斷奶仔豬回腸絨毛高度影響的Meta分析結果
共有17篇文獻研究了益生菌對斷奶仔豬回腸絨毛高度的影響(圖5),包括210頭斷奶仔豬,Meta分析結果顯示益生菌組與空白組間存在顯著的統計學差異(P=0.0003,SMD=1.20,95% CI=0.55~1.85)。亞組分析結果表明,酵母菌屬組與空白組間存在顯著的統計學差異(P=0.02,SMD=2.29,95% CI=0.36~4.22),乳桿菌屬組與空白組間存在顯著的統計學差異(P=0.004,SMD=1.24,95% CI=0.40~2.08),腸球菌屬組與空白組間也存在顯著的統計學差異(P=0.04,SMD=0.61,95% CI=0.01~1.21)。
2. 8 益生菌對斷奶仔豬回腸隱窩深度影響的Meta分析結果
共有17篇文獻研究了益生菌對斷奶仔豬回腸隱窩深度的影響(圖6),包括210頭斷奶仔豬,Meta分析結果顯示益生菌組與空白組間無統計學差異(P=0.09,SMD=-0.58,95% CI=-1.25~0.10)。亞組分析結果表明,酵母菌屬組與空白組間無統計學差異(P=0.56,SMD=0.57,95% CI=-1.38~2.52),乳桿菌屬組與空白組間也無統計學差異(P=0.14,SMD=-0.34,95% CI=-0.79~0.11),腸球菌屬組與空白組間存在顯著的統計學差異(P=0.01,SMD=-1.49,95% CI= -2.64~-0.34)。
2. 9 敏感性分析結果及發表偏倚程度
分別對結局指標[十二指腸(絨毛高度,隱窩深度)、空腸(絨毛高度,隱窩深度)及回腸(絨毛高度,隱窩深度)]進行敏感性分析,結果顯示,逐一剔除文獻后發現其異質性未得到明顯改善,說明上述結局指標分析結果較穩健。使用RevMan 5.3對納入的文獻制作漏斗圖,結果(圖7)顯示各結局指標文獻對稱性相對較好,僅小部分對稱性相對較差。其中,十二指腸絨毛高度、空腸隱窩深度及回腸絨毛高度的文獻分布對稱性相對較好,說明其發表偏倚程度較小;其余各結局指標文獻大部分對稱性較好,小部分對稱性相對較差,說明有一定的發表偏倚,但偏倚程度不明顯。
3 討論
小腸是營養物質吸收和轉運的主要部位,而小腸黏膜形態是影響動物吸收功能的重要因素。小腸絨毛高度的增加和表面積的增大,致使營養物質與小腸營養攝取轉運載體的接觸面積擴大,而有利于營養物質的吸收(Li et al.,2016)。斷奶期間的各種應激易導致腸道上皮屏障功能受損,絨毛長度變短、隱窩深度加深,導致小腸更易滲透(Moeser et al.,2007;Pohl et al.,2017);而小腸炎癥反應與其通透性增加有關,可造成毒素、過敏原、病毒及細菌的異常增加,抑制營養物質的吸收。本研究結果表明,益生菌可顯著提高十二指腸、空腸和回腸的絨毛高度,與Bontampo等(2006)、Suo等(2012)、Galeano等(2015)的研究結果一致,即給斷奶仔豬投喂益生菌可改善腸道上皮緊密連接的完整性,增加小腸絨毛高度。為進一步了解益生菌各菌屬成分對小腸形態的影響,本研究根據益生菌的菌屬進行亞組分析,結果顯示,酵母菌屬組和復合菌株組對十二指腸、空腸的絨毛高度無影響,乳桿菌屬組和腸球菌屬組可顯著提高十二指腸、空腸、回腸的絨毛高度,與van der Peet-Schwering等(2007)的研究結果一致,即添加酵母菌對腸道絨毛高度及隱窩深度無明顯影響。乳桿菌可降低血清中的內毒素含量,而維護腸道屏障的完整性和通透性(洪偉彬,2016);乳桿菌屬和腸球菌屬均為動物體內的正常菌群組分,在腸道內的定殖能力強,可形成生理屏障阻止有害細菌黏附,進而改善腸道內環境。
隱窩深度可從側面評估腸道上皮細胞的更新速度,健康仔豬的隱窩深度通常較低,因此隱窩深度降低代表動物機體黏膜功能改善,吸收能力增強(王斌星等,2016)。本研究結果顯示,益生菌對斷奶仔豬空腸和回腸的隱窩深度無影響,但對十二指腸隱窩深度影響顯著。亞組分析結果也顯示,酵母菌屬組對回腸和空腸的隱窩深度無影響,但顯著降低十二指腸隱窩深度;乳桿菌屬組對十二指腸、空腸和回腸的隱窩深度均無影響;腸球菌屬組對十二指腸和空腸的隱窩深度無影響,但顯著降低回腸隱窩深度;復合菌株組也可顯著降低十二指腸隱窩深度。可見,益生菌可顯著提高腸道細胞的增殖能力,維持腸道微生態環境平衡,維護腸道物理屏障的正常功能(Tang et al.,2019);而由多菌種組成的復合益生菌可協同發揮各菌種的生物學活性,在動物腸道內獲得更好的效果。此外,Meta分析發現某些菌種對斷奶仔豬小腸形態無明顯影響,可能是由同屬不同種或菌種間的特異性所決定,但具體原因有待進一步探究。
本研究結果表明,益生菌可改善斷奶仔豬小腸的形態結構,飼喂益生菌后可顯著提高斷奶仔豬十二指腸、空腸和回腸的絨毛高度,降低十二指腸隱窩深度,即益生菌在保護小腸腸道健康方面具有重要潛力。該結論可為解決仔豬生產過程中的腸道健康問題提供參考依據,但本研究也存在一定局限性:①所納入的英文文獻數量較少;②各研究試驗飼養環境及飼料情況有差異;③所選擇益生菌的規格可能不一致;④缺少既定的質量評價標準,無法對文獻質量進行科學評價;⑤各研究間的品種和斷奶策略不同,可能造成斷奶體重存在明顯差異。這些因素均有可能對Meta分析結果造成一定影響,因此,今后還需開展多中心大樣本且周期足夠長的隨機對照試驗作進一步驗證。
4 結論
益生菌通過顯著提高十二指腸、空腸和回腸的絨毛高度及降低十二指腸隱窩深度,以改善斷奶仔豬小腸的形態結構,其中,乳桿菌屬組和腸球菌屬組對絨毛高度的影響較顯著,復合益生菌對十二指腸隱窩深度的影響顯著。即益生菌在保護小腸腸道健康方面具有重要潛力,但需要注意同屬不同菌種間的差異。
參考文獻:
貢筱,郭俊剛,吳學壯,劉志,高秀華,楊福合,邢秀梅. 2014.飼糧中添加枯草芽孢桿菌和糞腸球菌對育成期藍狐生長性能、營養物質消化率及氮代謝的影響[J]. 動物營養學報,26(4):1004-1010. [Gong X,Guo J G,Wu X Z,Liu Z,Gao X H,Yang F H,Xing X M. 2014. Effects of Bacillus subtilis and Enterococcus faecium supplementations on growth performance,nutrient digestibility and nitrogen metabolism of growing blue foxes[J]. Chinese Journal of Animal Nutrition,26(4):1004-1010.]
洪偉彬. 2016. 乳桿菌對斷奶仔豬生產性能和腸道健康的影響[D]. 廣州:華南農業大學. [Hong W B. 2016. Effects of Lactobacillus on growth performance and intestinal health of weaned piglets[D]. Guangzhou:South China Agricultural University.]
李順. 2007. 活性酵母的篩選及其在斷奶仔豬日糧中的應用研究[D]. 長沙:湖南農業大學. [Li S. 2007. Isolation of activity yeast and its application in weaned piglets dietary[D]. Changsha:Hunan Agricultural University.]
李雪莉. 2017. 植物乳桿菌制劑對斷奶仔豬生長性能和腸道微生態的影響及豬源乳酸菌的分離與鑒定[D]. 南京:南京農業大學. [Li X L. 2017. Responsesof growth performance,intestinal microecology of weaning piglets to Lactobacillus plantarum and isolation,identification of lactic acid bacteria in swine[D]. Nanjing:Nanjing Agricultural University.]
牛志偉,范華龍,呂小麗,韋海向,韋慕蘭,蒙蘭麗,鄧小紅,黃鈞. 2017. 4種中藥對嗜水氣單胞菌抑菌效果的Meta分析[J]. 南方農業學報,48(1):144-150. [Niu Z W,Fan H L,Lü X L,Wei H X,Wei M L,Meng L L,Deng X H,Huang J. 2017. Meta analysis on antibacterial effects of four kinds of traditional Chinese medicines on Aeromonas hydrophila[J]. Journal of Southern Agriculture,48(1):144-150.]
史自濤. 2015. 糞腸球菌對斷奶仔豬的營養生理效應研究[D]. 重慶:西南大學. [Shi Z T. 2015. Nutrition and Phy-siological of Enterococcus faecalis on weaned piglets[D]. Chongqing:Southwest University.]
蘇琴. 2015. 復合益生菌培養物對斷奶仔豬生長性能、腸道生理及排泄物氨逸失的影響[D]. 杭州:浙江大學. [Su Q. 2015. Effects of complex-probiotic cultures on growth performance,intestinal physiology and ammonia emission in feces of weanling piglets[D]. Hangzhou:Zhejiang University.]
王斌星,王蜀金,郭春華,何歡,高彥華,柏雪,楊加豹,周琳. 2016. 釀酒酵母發酵液對斷奶仔豬生長性能、小腸發育及小腸黏膜免疫功能的影響[J]. 動物營養學報,28(12):4014-4022. [Wang B X,Wang S J,Guo C H,He H,Gao Y H,Bai X,Yang J B,Zhou L. 2016. Effects of Saccharomyces cerevisiae fermentation broth on growth performance,small intestine development and immune function of small intestinal mucosa of weaned piglets[J]. Chinese Journal of Animal Nutrition,28(12):4014-4022.]
王蜀金,王斌星,郭春華,柏雪,彭忠利,張正帆,周琳. 2016. 分泌表達pEGF的重組釀酒酵母在斷奶仔豬上的應用研究[J]. 畜牧獸醫學報,47(5):944-954. [Wang S J,Wang B X,Guo C H,Bai X,Peng Z L,Zhang Z F,Zhou L. 2016. Application research of recombinant EGF-expressed Saccharomyces cerevisiae in early-weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica,47(5):944-954.]
王永. 2013. 屎腸球菌對斷奶仔豬促生長機理及應用效果的研究[D]. 泰安:山東農業大學. [Wang Y. 2013. Effects of Enterococcus faecium on growth-promoting mechanism and application effectiveness in weaning piglets[D]. Tai?an:Shandong Agricultural University.]
魏清甜. 2014. 糞腸球菌替代飼用抗生素對保育仔豬生產、免疫、腸道發育及腸道微生物的影響[D]. 南京:南京農業大學. [Wei Q T. 2014. Effects of Enterococcus faecalis replacing of dietary antibiotics on performance,immunity,intestinal development and intestinal microflora of nursery pigs[D]. Nanjing:Nanjing Agricultural University.]
楊健,嚴作廷,王東升,張世棟,楊志強,董書偉. 2016. 中藥治療奶牛乳房炎的系統評價與Meta分析[J]. 南方農業學報,47(4):656-663. [Yang J,Yan Z T,Wang D S,Zhang S D,Yang Z Q,Dong S W. 2016. Systematic evaluation and meta-analysis on efficacy of Chinese herbal medicine on cow mastitis[J]. Journal of Southern Agriculture,47(4):656-663.]
周盟,張乃鋒,董曉麗,紀守坤,張立霞,崔祥,樓燦,刁其玉. 2013. 益生菌對斷奶仔豬生長及消化性能的影響[J]. 飼料工業,34(2):18-21. [Zhou M,Zhang N F,Dong X L,Ji S K,Zhang L X,Cui X,Lou C,Diao Q Y. 2013. Effe-cts of probiotics on growth and digestive performance of weaned piglets[J]. Feed Industry,34(2):18-21.]
Bajagai Y S,Klieve A V,Dart P J,Bryden W L. 2016. Probio-tics in animal nutrition:Production,impact and regulation[R]. Food and Agriculture Organization of the United states.
Bontampo V,Di Giancamillo A,Savoini G,Dell?Orto V,Domeneghini C. 2006. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets[J]. Animal Feed Science and Technology,129(3-4):224-236.
Cao S T,Wang L,Jiao L F,Lin F H,Xiao K,Hu C H. 2016. Effects of diosmectite-Lactobacillus acidophilus on growth performance,intestine microbiota,mucosal architecture of weaned pigs[J]. Animal Feed Science and Technology,220:180-186.
Eswara M S,Kavitha B T V V,Srikanth J G,Velmani G. 2010. Probiotics as potential therapies in human gastrointestinal health[J]. International Journal of Advances Pharmaceutical Sciences,1(2):96-110.
Fouhse J M,Zijlstra R T,Willing B P. 2016. The role of gut microbiota in the health and disease of pigs[J]. Animal Frontiers,6(3):30-36.
Galeano J A C,Lopez-Herrera A,Suescún J P. 2015. The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets[J]. Revista Fa-cultad Nacional de Agronomia Medellín,69(1):7803-7811.
Garcia G R,Dogi C A,Poloni V L,Fochesato A S,de Leblanc A D M,Cossalter A M,Payros D,Oswald I P,Cavaglieri L R. 2019. Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets:In vivo and ex vivo analysis[J]. Beneficial Microbes,10(1):33-42.
Gresse R,Chaucheyras-Durand F,Fleury M A,van De Wiele T,Forano E,Bianquet-Diot S. 2017. Gut microbiota dysbiosis in postweaning piglets:Understanding the keys to health[J]. Trends in Microbiology,25(10):851-873.
Hanczakowska E,Malgorzata ?,Malgorzata N W,Krzysztof O. 2017. Effect of glutamine and/or probiotic(Enterococcus faecium) feed supplementation on piglet performance,intestines structure,and antibacterial activity[J]. Czech Journal of Animal Science,62(8):313-322.
Heo J M,Opapeju F O,Pluske J R,Kim J C,Hampson D J,Nyachoti C M. 2013. Gastrointestinal health and function in weaned pigs:A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicro-bials[J]. Journal of Animal Physiology and Animal Nutriyion,97(2):207-237.
Herias M V,Hessle C,Telemo E,Midtveedt T,Hanson L A,Wold A E. 1999. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats[J]. Clinical & Experimental Immunology,116(2):283-290.
Hou C L,Zeng X F,Yang F J,Liu H,Qiao S Y. 2016. Study and use of the probiotic Lactobacillus reuteri in pigs:A review[J]. Journal of Animal Science and Biotechnology,6(1):14. doi:10.1186/s40104-015-0014-3.
Jeonga Y D,Kob H S,Hosseindoustb A,Choi Y H,Chae B J,Yu D J,Cho E S,Cho K H,Shim S M,Ra C S,Choi J W,Jang A,Kim Y I,Kim J S. 2019. Lactobacillus-based fermentation product and lactose level in the feed for weanling pigs:Effects on intestinal morphology,micro-biota,gas emission,and targeted intestinal coliforms[J]. Livestock Science,227:90-96.
Le B M,Davies H E,Glynn C,Thompson C,Madden M,Wiseman J,Dodd C E R,Hurdidge L,Payne G,Treut Y L,Craigon J,T?temeyer S. 2010. Influence of probiotics on gut health in the weaned pig[J]. Livestock Sciece,133(1):179-181.
Lee C Y,Lim J W,Ko Y H,Kang S Y,Park M J,Ko T G,Lee J H,Hyun Y,Jeong K S,Jang I S. 2011. Intestinal growth and development of weanling pigs in response to dietary supplementation of antibiotics,phytogenic pro-ducts and brewer?s yeast plus Bacillus spores[J]. Journal of Animal Science and Technology,53(3):227-235.
Li H Z,Ran T,He Z X,Yan Q G,Tang S X,Tan Z L. 2016. Postnatal developmental changes of the small intestinal villus height,crypt depth and hexose transporter mRNA expression insupplemental feeding and grazing goats[J]. Small Ruminant Research,141:106-112.
Liu X T,Wang Y,Wang H L,Lu W Q. 2014. Effect of a li-quid culture of Enterococcus faecalis CGMCC1.101 cultivated by a high density process on the performance of weaned piglets[J]. Livestock Science,170:100-107.
Moeser A J,Klok C V,Ryan K A,Wooten J G,Little D,Cook V L,Blikslager A T. 2007. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig[J]. American Journal Physiology. Gastrointestinal and Liver Physiology,292(1):G173-G181.
Pié S,Lallès J P,Blazy F,Laffitte J,Sève B,Oswald I P. 2004. Weaning is associated with an upregulation of expression if inflammatory cytokines in the intestine of piglets[J]. The Journal Nutriyion,134(3):641-647.
Pohl C S,Medland J E,Mackey E,Edwards L L,Baqley K D,Dewilde M P,William K J,Moeser A J. 2017. Early weaning stress induces chronic functional diarrhea,intestinal barrier defects,and increased mast cell activity in a porcine model of early life adversity[J]. Neurogastroenterology and Motility,29(11):10.1111/nmo.13118. doi:10.1111/nmo.13118.
Scharek-Tedin L,Kreuzer-Redmer S,Twardziok S O,Siepert B,Kiopfleisch R,Tedin K,Zentek J,Pieper R. 2015. Probiotic treatment decreases the number of CD14-expres-sing cells in porcine milk which correlates with several intestinal immune parameters in the piglets[J]. Frontiers in Immunology,6:108. doi:10.3389/fimmu.2015.00108.
Sezen A G. 2013. Effects of prebiotics,probiotics and synbio-tics upon human and animal health[J]. Atatürk ?niversitesi Veteriner Bilimmleri Dergisi,8:248-258.
Shen Y B,Piao X S,Kim S W,Wang L,Liu P,Yoon I,Zhen Y G. 2009. Effects of yeast culture supplementation on growth performance,intestinal health,and immune response of nursery pigs[J]. Journal of Animal Science,87(8):2614-2624.
Spreeuwenberg M A,Verdonk J M,Gaskins H R,Verstegen M W. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake atweaning[J]. The Journal of Nutrition,131(5):1520-1527.
Suo C,Yin Y S,Wang X N,Lou X Y,Song D F,Wang X,Gu Q. 2012. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Veterinary Research,8:89. doi:10.1186/1746-6148-8-89.
Tang W J,Qian Y,Yu B,Zhang T,Gao J,He J,Huang Z Q,Zheng P,Mao X B,Luo J Q,Yu J,Chen D W. 2019. Effects of Bacillus subtilis DSM32315 supplementation and dietary crude protein level on performance,gut barrier function and microbiota profile in weaned piglets1[J]. Journal of Animal Science,97(5):2125-2138.
van der Peet-Schwering C M C,Jansman A J M,Smidt H,Yoon I. 2007. Effects of yeast culture on performance,gut integrity,and blood cell composition of weanling pigs[J]. Journal of Animal Science,85(11):3099-3109.
Wang T W,Teng K L,Liu Y Y,Shi W X,Zhang J,Dong E Q,Zhang X,Tao Y,Zhong J. 2019. Lactobacillus plantarum PFM105 promotes intestinal development through modulation of gut microbiota in weaning piglet[J]. Frontiers in Microbiology,10:90.doi:10.3389/fmicb.2019.000 90.
Xie Y H,Zhang C Y,Wang L X,Shang Q H,Zhang G G,Yang W R. 2018. Effects of dietary supplementation of Enterococcus faecium on growth performance,intestinal morphology,and selected microbial populations of piglets[J]. Livestock Science,210:111-117.
Xu Y G,Yu H,Zhang L,Liu M,Qiao X Y,Cui W,Jiang Y P,Wang L,Li Y J,Tang L J. 2016. Probiotic properties of genetically engineered Lactobacillus plantarum produ-cing porcine lactoferrin used as feed additive for piglets[J]. Process Biochemistry,51(6):719-724.
Yang H S,Wu F,Long L N,Li T J,Xiong X,Liao P,Liu H N,Yin Y L. 2016. Effects of yeast products on the intestinal morphology,barrier function,cytokine expression,and antioxidant system of weaned piglets[J]. Journal of Zhejiang University. Science B,17(10):752-762.
Yi H B,Wang L,Xiong Y X,Wen X L,Wang Z L,Yang X F,Gao K G,Jiang Z Y. 2018. Effects of Lactobacillus reu-teri LR1 on the growth performance,intestinal morpho-logy and intestinal barrier function in weaned pigs[J]. Journal of Animal Science,96(6):2342-2351.
(責任編輯 蘭宗寶)