999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于多特征量的雷達輻射源脈間PRI調制識別

2019-11-11 02:12:14
雷達科學與技術 2019年5期
關鍵詞:特征

(中國洛陽電子裝備試驗中心, 河南洛陽 471003)

0 引言

對雷達信號脈間、脈內兩大類調制方式進行識別是電子情報分析(ELINT,Electronic Information Technology)的重要內容,有助于實現雷達輻射源有效識別[1]。隨著近年來數字電子技術的迅速發展,雷達信號波形、調制方式更加復雜多變,加之外部所面臨的電磁環境也越來越惡劣。在這樣的軍事需求牽引下,展開雷達輻射源信號調制方式識別技術研究,對電子偵察而言具有重要的理論意義與實用價值。

雷達信號脈間參數主要包括中心頻率、脈寬、PRI等,其中尤以PRI的調制特征最為復雜,包括固定、抖動、參差、滑變、脈組捷變、周期變化(如正弦調制、三角調制)等,對PRI調制類型的正確識別可以幫助我們判斷雷達輻射源的工作模式、用途以及威脅等級[2-3]。傳統的PRI調制識別方法可以歸類為直方圖統計法、支持向量機算法等[4-8],前者主要通過統計各時間間隔段的脈沖個數,依據操作員的經驗進行人工識別,當截獲脈沖較少時識別效果較差,而且對PRI復雜調制識別的能力較弱;后者要求分類器設計要科學合理,而且需要足夠的樣本數據進行訓練,但方法復雜程度比較高,目前僅停留在理論研究層面,尚未投入工程實踐。

鑒于此,本文針對雷達脈沖常見的PRI調制方式,在融合去交錯后PRI序列的時域、頻域特性基礎上,提取了零交叉密度等多個特征量,在充分考慮脈沖丟失與虛假脈沖處理、外部噪聲等實際應用的基礎上,設計了基于多特征量的綜合識別處理算法流程,實現了對雷達常規PRI調制方式的識別輸出。仿真結果表明,該方法具有較為穩健的識別性能,運算量較小,適用性較強。

1 雷達輻射源信號脈間PRI調制分析

1.1 典型PRI調制樣式

在雷達信號特征參數中,PRI是其中工作樣式最多、參數范圍最大、變化最快的一個參數,即使是同一部雷達其也可能有幾種甚至十幾種。隨著電子反偵察和雷達新技術的投入使用,雷達輻射源的體制也愈加復雜[6]。圖1給出了6種常見的雷達脈間PRI復雜調制序列波形,固定PRI由于比較簡單,在此不再贅述。

圖1 6種常見的雷達脈間PRI復雜調制序列波形示意圖

1.2 典型PRI脈沖數學模型

對于有N+1個脈沖的雷達信號序列,設定每個脈沖前沿到達時間t(n) ,做一次差分為

p(n)=t(n+1)-t(n),n=0,1,…,N-1

(1)

p(n)為PRI序列,它的變化反映了PRI調制方式的變換規律,下面對常見7種PRI調制的信號模型進行介紹。

1) 固定PRI調制序列

p(n)=Tm,n=0,1,…,N-1

(2)

式中,Tm為PRI的均值。

2) 抖動PRI調制序列

p(n)=Tm+w(n),n=0,1,…,N-1

(3)

式中,Tm為PRI的均值,w(n) 為抖動量,一般服從高斯或均勻分布。隨機抖動量最大可到達PRI均值的30%。對抖動的量值和類型的判別有助于判定雷達輻射源的類別。

3) 滑變PRI調制序列

(4)

式中,A0為p(n)的最小值,B為p(n)的最大值與最小值之差,Tp為周期長度。對于滑變PRI調制,其PRI序列變化的規律為周期性單調增加或減少,當達到一個極值時迅速返回到另一極值,這種PRI調制可以用來消除遮蓋(盲距)。

4) 三角PRI調制序列

(5)

式中,A0為p(n)的最小值,N為三角PRI調制周期長度,k1和k2分別為p(n)的每個調制周期內前N1和后N2點對應的調制斜率,且N=N1+N2。

5) 正弦PRI調制序列

n=0,1,…,N-1

(6)

式中,A0為p(n)的最小值,B為p(n)的真幅度,f0為基波頻率。正弦PRI調制的p(n)振幅值一般為其平均值的5%左右。

6) 脈組捷變PRI調制,以常見的三重頻PRI為例,在一個周期內有3次切換,其PRI序列為

(7)

式中:A0,A1,A2分別表示切換的值;B0,B1,B2分別為其對應的駐留時間。此類型主要用在脈沖多普勒雷達中消除距離模糊、速度模糊問題,或者消除目標的遮蓋(盲距)與盲速等。

7) 參差PRI調制序列

n=0,1,…,N-1

(8)

1.3 典型PRI調制應用模式

PRI是雷達輻射源的固有特征參量,它決定了雷達的最大不模糊距離和徑向速度,可能是固定的,也可能是時變的;同時PRI也是雷達信號分選最重要的參數,是雷達信號主分選過程中使用的唯一參數。根據雷達體制和功能的不同,脈沖序列PRI調制方式也不同[4-10]。表1給出了常見PRI變化規律及其應用模式映射關系。

表1 常見PRI變化規律及其應用模式映射關系

2 基于多特征量的綜合識別方法

2.1 特征量提取

由于雷達信號PRI模式復雜多變,只采用單一特征參數很難將其全部識別[4]。針對前面提到的7種PRI調制方式,在分析去交錯后PRI序列的時、頻域特性的基礎上,有針對性地提取了零交叉密度、諧波幅度比、PRI序列差分極性特征、PRI序列差分零點密度、PRI二級差分序列5個特征量,其中不同的分類特征量所表征的物理內涵也各不相同。

1) 零交叉密度(C1)

設PRI序列p(n)去直流后的交流分量為w(n) 。令z(i)為

(9)

式中,i=0,…,L-1,L=N-2。定義一定數據長度下PRI序列中交流成分過零點的總次數為零交叉密度,其可表示為[4]

(10)

對于滑變、正弦調制及脈組捷變等幾種周期性非隨機抖動PRI調制方式,其PRI序列交流分量的過零點個數與周期有關,一般較小。由式(3)可知,對于抖動PRI調制而言,z(i)服從0-1分布,取1或0的概率。實質上,對抖動PRI而言,C1就是統計L次獨立重復實驗事件{z(i)=1}成功的次數。因此,隨機變量C1服從參數為L,q的二項分布,即C1~b(L,q),于是有

(11)

式中,k為一門限值。

圖2所示為PRI高斯抖動時,不同數據長度L下k的取值范圍為0.2~0.3L時,Pr(C1>k)的變化曲線。由圖可知,當數據長度為50左右時,Pr(C1>0.2L)、Pr(C1>0.25L)的值接近1,即在一定的數據長度下,抖動類型零交叉密度遠大于其他3種PRI調制類型。因此,用零交叉密度區分抖動PRI調制的依據是合理的。

圖2 PRI高斯抖動參數變化示意圖

2) 諧波幅度比(C2)

為了分析方便,對非抖動PRI序列(正弦調制、滑變、脈組捷變)p(n),考慮其連續時間形式p(t),可知p(t)具有周期性。現考慮其第一個周期0≤t≤Tp的情形。

對于正弦PRI調制,p(t)及頻譜p(ω)可表示為

(12)

式中,A0為p(t)的最小值,B為p(t)的真幅度,f0為基波頻率。可見正弦調制PRI序列的頻譜中只有直流分量和一次諧波分量,無其他諧波分量。

對于滑變PRI調制,p(t)及其頻譜p(ω)可表示為

(13)

式中,A0為p(t)的最小值,B為p(t)的最大值與最小值之差。由式(13)可知,其頻譜中包含直流及各次諧波分量,且一次諧波分量的大小分別是二次諧波的2倍,三次諧波的3倍,之后各次諧波的分量都以單調方式衰減。

對于脈組捷變類型,由式(7),其頻譜為

(14)

式中,sinc(x)=sin(x)/x為辛克函數。由式(14)可知,其頻譜分量中也包含了各次諧波分量及直流分量,但各諧波分量之間的大小以辛克函數方式衰減,具體的比例關系受參數集{A0,A1,A2}及{B0,B1,B2}的影響。上述規律可推廣到多重頻切換情形。

于是,定義諧波幅度比特征量為[4]

(15)

式中,P1為基波分量的幅度,P2為二次諧波分量的幅度。從上述分析可知,對于正弦調制,理論上其頻譜中除基波分量外,其他各次諧波分量均無能量分布。考慮測量噪聲較小時,P2≈0,所以C2較大。對于滑變、脈組捷變PRI調制方式,由于基波與二次諧波上均有能量分布,所以C2要遠小于正弦調制PRI情況(特別地對于滑變類型,C2=2),這樣利用特征量C2可將正弦PRI調制方式識別出來,且此特征只跟PRI調制形式有關,基本不受具體參數變化的影響。

此外,一般所截獲雷達信號的PRI序列是整個周期序列中的一部分,其起點時刻具有隨機性。由于傅里葉變換的模值具有時移不變性,所以被截獲PRI序列的起點隨機性對諧波幅度比特征量無影響。

3) PRI序列差分極性特征(C3)

對滑變、脈組捷變的PRI序列做差分,可得

Dp(n)=p(n+1)-p(n),n=0,1,…,N-2

(16)

圖3 脈組捷變與滑變PRI序列的二次差分波形

滑變、脈組捷變的PRI序列一次差分波形如圖3所示。對于脈組捷變PRI類型,其PRI序列的差分波形中極值符號有正有負,而滑變類型PRI差分序列極值符號是一致的(全正或全負)。為此,先尋找Dp(n)的極值點li,(i=1,…,Q),再定義特征量。

(17)

式中,

(18)

其中,符號“—”表示邏輯非。符號函數sgn(x)的取值為邏輯型,C3也是邏輯型,其實質是統計PRI序列差分后極值符號的種類。當極值符號有正有負時,取值為1,可同步統計PRI序列差分零點密度(詳見C4定義),從而判別是否為脈組捷變PRI類型;當極值符號全正或全負,并且在容差范圍內PRI差分值遞增/遞減相對固定時,取值為0,可判別為滑變PRI類型。

4) PRI序列差分零點密度(C4)

由脈組捷變、參差、三角調制的PRI序列表達式可知,對于參差PRI類型和三角調制PRI類型,其PRI序列的差分波形中不存在零點,而脈組捷變PRI差分序列中有較多零點。

設PRI序列一階差分Dp(n),令g(i)表示為

(19)

式中,i=0,1,…,L-1,L=N-2。定義一定數據長度下PRI一階差分序列中零點的總次數與序列長度之比為零點密度,表達式為

(20)

顯然,對于脈組捷變類型,其零點密度要遠大于參差類型和三角調制類型。

5) PRI二階差分序列(C5)

對三角、參差的PRI序列做二階差分,可得

DDp(n)=Dp(n+1)-Dp(n)

n=0,1,…,N-2

(21)

由參差、三角調制的PRI序列表達式可知,對于參差PRI類型,其PRI序列的差分波形中極點數目很多(數目與PRI序列數幾乎相等),而三角調制的PRI類型,其PRI序列的差分波形中極點數目在一個調制周期內最多只出現2次。即對于二階差分序列圖,在一個周期內三角調制最多出現2次非零值,而參差調制出現多次非零值,如圖4所示。

圖4 參差與三角PRI序列的二次差分波形

一定數據長度下PRI二階差分序列中非零點次數Q與周期內總點數L之比,可表示為

(22)

顯然,對于參差類型,其極點密度要遠大于三角調制類型。

2.2 多特征量綜合識別

結合前面定義的多個特征量,設計了基于PRI序列特征分析的綜合識別算法流程如圖5所示。通過比較5個特征量C1,C2,C3,C4,C5與其對應門限d1,d2,d3,d4,d5之間的邏輯關系,可對7種常用體制PRI調制信號進行識別。其中,用于檢測固定PRI的序列均方差值(假定為C0)門限用d0表示,d3為邏輯型變量(取值為0或1),本文設置為0,其他門限取值為工程經驗值,具體取值結果詳見仿真實驗。

圖5 PRI調制方式識別算法流程

為了更好地解讀識別算法流程,下面對圖5中涉及的三項關鍵技術進行說明。

1) 去直流的方法

工程上,先取PRI序列的平均值作為直流分量的估計,然后在PRI序列p(n)中將此PRI平均值減去,可得到去直流后的交流分量。

2) 關于脈沖丟失與虛假脈沖的處理方法

工程上,如果PRI序列中某個值大于1.5倍的PRI平均值,就認為有脈沖丟失,用其前一個PRI序列的值作為該值的修正值。對虛假脈沖則用中值濾波法,將3個PRI序列的中值作為修正值。

3) 諧波幅度比計算過程中DFT(離散傅里葉變換)點數的確定方法

特征量C2需要計算基波分量與二次諧波的幅度比。這個值在實際計算中需要通過對PRI序列做DFT后得到,且要求在做DFT后,基波分量及二次諧波分量對應的譜線盡量落在量化頻率點上,這樣才能保證諧波幅度比的計算有效性。一般來說,若DFT點數與序列的周期相等,可以保證基波分量及二次諧波分量對應譜線落在量化頻率點。本算法對正弦、滑變及脈組捷變三類周期性PRI進行區分之前,事先沒有其PRI序列周期的先驗信息,很難保證DFT點數是PRI周期的整數倍。由于序列的周期信息事先不可知,所以在做DFT時需要對其進行估計,估計的具體方法如下。

(23)

2.3 仿真實驗

為進一步驗證算法的有效性,開展了典型雷達輻射源脈間PRI調制識別的仿真實驗。其中,雷達信號通過計算機仿真生成,其脈間參數設置如下:載頻(RF)在1 258 MHz和1 317 MHz頻點間交替發射,脈沖到達時間相差(TOA)固定值25 μs,不同頻點間發射信號脈寬(PW)設置不同,分別為25 μs和13 μs,PRI調制類型設置為“參差”,以24個脈沖為周期交替變化。脈內參數設置如下:調制類型設置為LFM,帶寬設置為0.5 MHz。在數字信號生成基礎上,通過疊加外部噪聲,實現了信號空間合成的模擬,初始信噪比設置為10 dB。后端目標信號分布特性如圖6所示。

圖6 雷達脈沖信號分布特性仿真結果圖

按照前面特征量的定義,得到了典型特征量的計算結果及門限工程經驗值(考慮測量噪聲等容差),如表2所示。

表2 仿真實驗結果

按照多特征量綜合識別算法流程,對比Ci與di之間的邏輯關系,得到該雷達輻射源的脈間PRI調制類型為“參差”,這與仿真初始設置條件相一致,進一步驗證了算法的有效性及識別輸出的穩健性。

3 結束語

未知雷達輻射源脈間PRI調制識別一直是電子偵察領域的熱點和難點問題。本文針對雷達輻射源信號常見的7種脈間PRI調制方式特點,提取了零交叉密度、PRI二階差分序列等多個特征量,在充分考慮脈沖丟失與虛假脈沖處理等實際應用的基礎上,結合工程實踐設計了一種基于多個特征量的綜合識別算法。仿真實驗表明,將該算法用于雷達輻射源脈沖序列PRI調制方式識別是可行和有效的。另外較之以往通過支持向量機及直方圖統計的方法,該算法復雜程度更低,工程應用穩健性更強。

猜你喜歡
特征
抓住特征巧觀察
離散型隨機變量的分布列與數字特征
具有兩個P’維非線性不可約特征標的非可解群
月震特征及與地震的對比
如何表達“特征”
被k(2≤k≤16)整除的正整數的特征
中等數學(2019年8期)2019-11-25 01:38:14
不忠誠的四個特征
當代陜西(2019年10期)2019-06-03 10:12:04
詈語的文化蘊含與現代特征
新聞傳播(2018年11期)2018-08-29 08:15:24
抓住特征巧觀察
基于特征篩選的模型選擇
主站蜘蛛池模板: 亚洲欧美在线看片AI| 免费久久一级欧美特大黄| 午夜久久影院| 国产99欧美精品久久精品久久| 国产精品无码久久久久久| aⅴ免费在线观看| 亚洲永久视频| 欧美成一级| 天堂va亚洲va欧美va国产| 无码福利视频| 亚洲黄网在线| 国产成人精品一区二区三在线观看| 亚洲第一区欧美国产综合| 日本高清有码人妻| 亚洲国产日韩欧美在线| 无码人中文字幕| 国产一区二区影院| 91精品啪在线观看国产91九色| 国产99在线观看| 久久久久人妻一区精品| 日韩欧美国产成人| 亚洲天堂久久新| 91人人妻人人做人人爽男同| 久久国产亚洲偷自| 日韩欧美中文| 久精品色妇丰满人妻| 男女男精品视频| 2018日日摸夜夜添狠狠躁| 亚洲第一中文字幕| 国产天天色| 精品久久蜜桃| 免费国产不卡午夜福在线观看| 99热这里只有免费国产精品 | 中国一级特黄大片在线观看| 手机成人午夜在线视频| 无码专区国产精品一区| 性色一区| 精品视频福利| 囯产av无码片毛片一级| 国产91久久久久久| 男人天堂伊人网| 亚洲v日韩v欧美在线观看| 国产网站一区二区三区| 国产欧美在线观看视频| 性网站在线观看| 狠狠五月天中文字幕| 99久视频| 91精品国产一区自在线拍| 狠狠亚洲五月天| 国产精品理论片| 国精品91人妻无码一区二区三区| 亚洲综合色婷婷| 久久久黄色片| 久久毛片网| 色综合中文| 国产无码精品在线播放| 亚洲精品天堂自在久久77| 亚洲人成网站色7799在线播放 | 午夜少妇精品视频小电影| 精品久久高清| 午夜无码一区二区三区在线app| 精品视频一区在线观看| 欧美日韩成人| 91黄视频在线观看| 国产区在线看| 亚洲中文字幕在线观看| 日本在线欧美在线| 国产精品欧美激情| 免费高清自慰一区二区三区| 亚洲黄色高清| 波多野结衣无码中文字幕在线观看一区二区 | 又粗又大又爽又紧免费视频| 亚洲无码视频喷水| 777午夜精品电影免费看| 国产丝袜啪啪| 欧美激情,国产精品| 亚洲 欧美 日韩综合一区| 日韩视频免费| 免费毛片全部不收费的| 亚洲精品麻豆| 欧美不卡在线视频| 91福利免费视频|