曹玉軍,吳楊,劉志銘,崔紅,2,呂艷杰,姚凡云,魏雯雯,王永軍
減源對不同密度春玉米開花后干物質及氮、磷、鉀積累轉運的影響
曹玉軍1,3,吳楊1,劉志銘1,崔紅1,2,呂艷杰1,姚凡云1,魏雯雯1,王永軍1
(1吉林省農業科學院農業資源與環境研究所/玉米國家工程實驗室,長春 130033;2吉林農業大學農業資源與環境學院,長春 130118;3東北農業大學農學院,哈爾濱 150030)
【】探討葉源調減(“減源”)對不同密度群體的產量,干物質及氮、磷、鉀元素積累轉運的影響,以期為東北春玉米密植高產及養分利用效率的進一步提高提供理論依據。以生產上大面積種植的玉米品種先玉335為試驗材料,采用裂區試驗設計,主區為不同密度,分別為常規生產種植(60 000株/hm2)和高密度種植(90 000株/hm2);副區為不同減源強度處理,于開花吐絲期將植株的每1片綠葉橫剪1/2、1/3、1/4(用T1、T2、T3表示),不剪葉為對照(CK),測定吐絲期(減源后)至成熟期植株干物質及氮、磷、鉀積累與轉運情況。在常規生產種植密度下,不同減源處理的穗粒數、百粒重、產量均較CK顯著降低(<0.05),其中T1、T2、T3處理分別較CK平均減產32.1%、20.3%和11.9%;而高密度處理,T3處理顯著提高了穗粒數,產量顯著增加,較CK增產7.7%。與CK相比,不同減源處理均提高了營養器官干物質及氮、磷、鉀養分轉運率,減源程度越大,干物質與養分轉運率越高,其中在常規生產種植條件下,T1處理營養器官的氮、磷、鉀轉運率2年平均分別較CK提高25.4%、19.1%、10.7%,T2處理的分別提高14.3%、9.8%、5.2%,T3處理的分別提高19.0%、10.7%、8.4%;在高密度種植條件下,T1處理營養器官的氮、磷、鉀轉運率2年平均分別較CK提高17.1%、12.8%、5.8%,T2處理的分別提高12.6%、8.0%、3.6%,T3處理的分別提高14.9%、11.3%、3.9%。常規生產種植條件下不同減源處理降低了籽粒中氮、磷、鉀的積累量,而高密度種植條件下適當減源,籽粒中氮、磷、鉀的積累量有所提高,其中T3處理2年平均比CK提高11.8%、6.9%、6.1%,而T1、T2處理籽粒氮、磷、鉀積累量2年均值分別比CK降低20.4%、23.4%、20.0%和10.3%、15.6%、16.0%。高密度玉米群體存在葉片冗余,適當減少葉源量(剪葉1/4),促進了營養器官干物質和氮、磷、鉀營養元素向籽粒的合理轉運,提高了成熟期籽粒氮、磷、鉀營養元素的積累量,顯著提高產量。因此,在玉米生產中合理增加密度,在高密度群體下適當調減葉源量,是春玉米進一步高產和養分高效的有效途徑。
春玉米;不同密度;減源;干物質;氮磷鉀積累與轉運
【研究意義】在耕地資源有限、人口不斷增加、糧食需求日益提高的背景下,進一步挖掘單產潛力仍是玉米栽培研究中面臨的重大課題[1-2]。玉米生產是田間條件下的群體生產過程[3],在穩定單穗粒重或略有降低的情況下,增加種植密度,提高資源利用率,依靠群體發揮增產是獲得高產的重要措施之一[4-5]。然而,增加種植密度要有一定限度,密度過高致使葉片之間相互遮蓋,冠層郁閉,葉片早衰,影響了玉米植株的光合作用及干物質積累與分配,限制了籽粒庫的發育[6-7]。此外,在高密度種植條件下,植株對光熱資源的競爭加劇,使更多資源用于個體競爭能力增強[8],其結果必然導致資源的重新分配,如葉片或根系的相對增大,從而過多消耗營養物質和能量,降低了物質向生殖器官分配的比例,導致單株生產力下降[8-9]。適度減少葉片冗余能夠使作物對獲取的有限物質和資源進行合理分配和利用,對實現作物增產及資源高效利用具有重要意義[8]。【前人研究進展】去除過度生長的營養器官來合理調控群體結構、提高現存能量利用率、獲得較高籽粒產量的研究已有較多相關報道。劉志全等[10]研究結果表明,在高密度條件下通過剪葉適度降低葉面積指數有利于玉米產量的提高,當葉面積指數降為5.5時,產量比對照提高16.6%。Liu等[11]在高密度條件下發現,通過去除玉米植株最上部2片葉可改善群體冠層內部的受光姿態并最終提高穗位葉凈光合速率、穗位層光合有效輻射及葉片活性氧清除能力,協調了群體與個體的關系,從而提高了產量。Xue等[12]研究表明,去除穗位上部3片葉,提高了基部莖稈碳水化合物含量,從而增強了莖稈抗倒伏能力。花前營養器官轉運的氮、磷、鉀是禾谷類作物籽粒中氮、磷、鉀主要來源,促進營養器官積累的干物質和氮、磷、鉀向籽粒轉運,對實現玉米增產和養分高效利用具有重要作用[13]。作物營養器官干物質和氮、磷、鉀等營養元素的積累與轉運不僅受品種特性、環境因子、播種日期、種植密度、養分和水分供應等因素影響[14-18],而且也受植株生理狀況如源的強弱、庫的大小及流的暢通與否等內在因素影響[19]。許蓓蓓等[20]就利用剪葉疏花方法證明源庫調節對常規粳稻營養器官儲存物質的轉運、籽粒灌漿結實率和千粒重有顯著影響。【本研究切入點】針對玉米不同密度群體,在不同程度減源條件下,玉米干物質和氮、磷、鉀養分積累與轉運利用特性的研究鮮見報道。【擬解決的關鍵問題】本研究以生產上大面積種植的玉米品種先玉335為試驗材料,在常規生產密度和高密度種植條件下,于開花吐絲期進行不同程度的減源處理,解析葉源調減后對不同密度群體干物質分配及氮、磷、鉀積累轉運產生的影響,以期為玉米產量及養分利用效率的進一步提高提供理論依據。
試驗于2014年和2015年在吉林省農業科學院哈拉海綜合實驗站(44°05′N,124°51′E)進行,土壤類型為黑土,0—20 cm耕層土壤有機質25.1 g·kg-1,全氮1.6 g·kg-1,速效磷27.6 mg·kg-1,速效鉀198.7 mg·kg-1。生育期氣象數據(平均溫度、最高溫度、最低溫 度、降雨量)通過試驗點的自動氣象站獲取(圖1)。

圖1 玉米生育期氣象條件
試驗采用裂區設計,主區為不同密度,分別為常規種植(60 000株/hm2)和高密度種植(90 000株/hm2);副區為不同減源處理,于開花吐絲期(果穗花絲全部抽出)進行3個減源強度處理,即將植株的每1片葉橫剪1/2(T1)、1/3(T2)、1/4(T3),不剪葉為對照(CK),重復3次,小區行長6 m,6行區,行距65 cm。供試品種為先玉335,是目前生產上大面積推廣應用的品種。2014年5月4日播種,9月28日收獲,7月25日進行不同強度的減源處理;2015年5月7日播種,9月30日收獲,7月30日進行不同強度的減源處理。減源后測定不同處理的葉面積,群體葉面積指數(表1)。整個生育期施N 300 kg·hm-2,P2O5150 kg·hm-2,K2O 150 kg·hm-2,磷肥和鉀肥做底肥一次性施入,氮肥分基肥、拔節肥2次施入,比例為1﹕1。剪葉時準確且迅速,盡量減少植株其他部分的損傷,其他管理措施同一般生產田,整個生育期保證有良好的管理。
1.3.1 干物質積累 于剪葉后第2天及生理成熟期,每處理分別選取有代表性的植株5株,分葉片、莖稈(含穗軸和苞葉)、籽粒3部分,于105°C殺青30 min,75°C烘至恒重稱重。將上述樣品粉碎后用于養分測定。用H2SO4-H2O2消煮,并用BüCHI全自動凱氏定氮儀測定氮含量;釩鉬黃比色法測定全磷含量;火焰光度法測定鉀含量。

表1 減源后不同處理群體葉面積指數
1.3.2 養分積累 參照文獻[21]的方法,計算花后營養器官(葉片和莖鞘)干物質(養分)轉運量、轉運率及其對籽粒的貢獻率。
干物質(養分)轉運量=開花期各營養器官干物質(養分)積累量-收獲期各營養器官干物質(養分)積累量;
干物質(養分)轉運率(%)=營養器官干物質(養分)轉運量/開花期各營養器官干物質(養分)積累量×100;
轉運貢獻率(%)=干物質(養分)轉運量/成熟期產量(成熟期籽粒養分積累量)×100。
1.3.3 產量及產量構成因素 在玉米籽粒成熟期,選取每個小區中間2行進行人工收獲,統計有效穗數,用均值法選取10穗,自然風干后進行室內考種,考察穗粒重、穗粒數、百粒重及含水量,產量按籽粒含水量14%進行折算。
采用Microsoft Excel 2010進行數據處理,SPSS 17.0軟件進行方差分析,處理間平均數差異的顯著性檢驗用Duncan’s法;采用Sigmaplot 12.0軟件作圖。
種植密度、減源處理對玉米產量均有極顯著影響,且種植密度、減源處理間存在顯著的交互作用(表2)。2年的試驗結果表明,在60 000株/hm2密度下,不同程度減源處理穗粒數、百粒重、產量均較CK降低,減源程度越大,各指標降低幅度越大,減源處理與CK差異均達顯著水平,其中T1、T2、T3處理2年平均產量分別較CK降低32.2%、20.3%、11.9%;禿尖長則隨著減源程度的增加呈增加趨勢,顯著高于CK,但各減源處理間差異不顯著;在90 000株/hm2密度下,穗粒數、百粒重、產量均表現為T3>CK>T2>T1,其中T3處理產量顯著高于與其他處理;而禿尖長的變化趨勢與其他指標正好相反,表現為T3顯著低于其他處理。T1和T2處理2年平均產量分別較CK降低19.3%、18.2%和7.2%、7.6%,而T3處理平均產量較CK提高7.7%。可見,較低密度條件下,減源減產,減源幅度越大,產量降低越大;而高密度條件下適當減源產量有所增加,且在減源強度相同的情況下,高密度減源減產的程度要低于低密度減源減產的程度,可見只有在高密度種植條件下減源才有利于玉米增產。
不同減源處理對干物質積累與轉運的影響如表3所示。2年的結果表明,在60 000株/hm2條件下,葉片、莖鞘干物質的轉運量、轉運率均隨著減源程度的增加而提高,T1、T2、T3處理葉片干物質轉運率較CK平均分別提高12.7、6.4、4.3個百分點,莖鞘干物質轉運率較CK平均分別提高10.3、7.3、2.7個百分點;在90 000株/hm2條件下,葉片干物質轉運量2014年表現為T1最高,CK次之,T3最低,其中T1、CK、T2處理間差異不顯著,而與T3處理差異達顯著水平;2015年葉片干物質轉運量表現為T1>T2>CK>T3,各處理間差異不顯著。莖鞘干物質轉運量與轉運率2年均表現為隨著減源程度的增加而提高,其中T3處理與CK差異不顯著,而T1、T2處理與CK差異達顯著水平。
從表4可看出,除不同年份間葉片和莖鞘元素轉運率(氮、磷、鉀),不同密度間葉片轉運率(氮、鉀)及不同減源處理間葉片鉀素轉運率差異不顯著外(>0.05),其他各處理氮、磷、鉀轉運率差異均達顯著或極顯著水平。與CK相比,不同密度條件下減源處理均提高了葉片和莖鞘氮、磷、鉀礦質元素的轉運率。以2014年為例,在60 000株/hm2密度下,葉片氮素轉運率T1、T2、T3處理分別比CK提高了10.9、8.2、3.6個百分點,磷轉運率分別提高了5.2、4.2、3.4個百分點,鉀素轉運率分別提高了9.2、5.6、3.4個百分點;莖鞘氮素轉運率T1、T2、T3處理分別比CK提高了9.4、7.9、4.0個百分點,磷素轉運率分別提高了9.6、5.7、1.2個百分點,鉀素轉運率分別提高了5.4、2.3、2.8個百分點;在90 000株/hm2密度下,葉片氮素轉運率T1、T2、T3處理分別比CK提高了8.4、2.7、1.8個百分點,磷轉運率分別提高了3.5、2.4、3.0個百分點,鉀素轉運率分別提高了5.4、3.9、2.0個百分點;莖鞘氮素轉運率T1、T2、T3處理分別比CK提高了8.6、7.4、3.6個百分點,磷素轉運率分別提高了8.7、7.1、2.3個百分點,鉀素轉運率分別提高了6.4、5.3、1.0個百分點。可見,隨著減源程度的增加,葉片和莖鞘氮、磷、鉀元素轉運率呈增加的趨勢,在同一處理下,低密度養分轉運率要高于高密度。

表2 不同減源處理玉米產量及產量構成
數據后不同字母表示處理在0.05水平下差異顯著。*和**分別表示顯著水平(<0.05)和極顯著水平(<0.01),ns表示無顯著差異。下同
Values followed by different letters are significantly different among the treatments at<0.05. * and ** are significantly different at<0.05 and<0.01, respectively, ns means no significance. The same as below
成熟期籽粒氮、磷、鉀養分積累量不同處理間差異同干物質積累量基本一致(表5),營養器官氮、磷、鉀積累量及轉運貢獻率在不同年份間差異不顯著,但密度、減源處理均達顯著或極顯著差異水平。在60 000株/hm2密度下,氮、磷、鉀養分積累量處理間均表現為CK>T3>T2>T1,即隨著減源程度的增加籽粒氮磷鉀養分積累量逐漸降低,其中氮素積累量各處理間差異達顯著水平;減源提高了營養器官養分轉運貢獻率,減源程度越大,轉運貢獻率越高;在90 000株/hm2密度下,除2014年籽粒磷素積累量外,其他各處理氮、磷、鉀養分積累量均表現為T3>CK>T2>T1,而營養器官養分轉運貢獻率處理間則表現為T1>T2>CK>T3。即在高密度種植條件下,減源1/4處理營養器官養分貢獻率相對較低,說明籽粒中更多營養元素來自作物根系的吸收。

表3 不同減源處理干物質積累與轉運

表4 不同減源處理葉片和莖鞘氮、磷、鉀養分轉運率

表5 不同處理籽粒氮磷鉀積累及營養器官養分轉運貢獻率
玉米作為C4作物,高產潛力巨大。單純通過提高單穗重增加單產的潛力有限,玉米產量是田間條件下的群體生產過程,依靠群體發揮增產潛力是獲得高產的重要途徑之一,而種植密度是調控群體最簡單最有效的栽培措施[22]。在生產上選用莖葉夾角小、株型緊湊的玉米品種來增加種植密度是玉米實現高產突破的重要途徑[23]。本研究結果表明,玉米產量不同處理間均表現為高密度種植高于常規密度,差異達顯著或極顯著水平,說明增加種植密度是提高玉米產量的重要措施之一。進一步研究表明,在常規種植密度(60 000株/hm2)條件下,不同減源處理均顯著降低了玉米產量,減源程度越大,產量越低;而在高密度(90 000株/hm2)條件下,減源1/4可以顯著提高玉米產量,2年較CK平均增產7.7%。可見,高密度種植條件下玉米葉片確實存在一定冗余,去除冗余對產量提高有利,這也驗證了前人在夏玉米上的研究結果[24]。
玉米籽粒產量的物質來源主要由兩部分組成:一部分是開花后直接運輸到籽粒中的同化產物和開花后形成的暫貯藏性物質的再轉移;另一部分是開花前生產的同化物暫貯藏于營養器官中,在灌漿期再轉移到籽粒中[25]。光合產物在營養器官積累及轉運的多少是籽粒產量形成的重要物質基礎,前人研究表明,春玉米產量在很大程度上取決于生育后期的光合產物同化能力,但葉片與莖鞘的干物質轉移與分配也是玉米籽粒產量形成的重要因素[18,25]。營養器官干物質轉移與分配不僅受基因型、環境、栽培措施影響,同時也受源庫調節手段等影響。Zhang等[26]通過源庫調節試驗發現剪葉處理顯著提高了不同小麥品種營養器官干物質的轉運率,而疏花處理則抑制了營養器官干物質轉運率。本研究結果表明,不同減源處理均提高了玉米剩余葉片轉運率和莖鞘干物質的轉運量及轉運率,彌補了因減源造成的光合產物供應量的減少,從而使籽粒灌漿進程正常進行。在60 000和90 000株/hm2條件下,減源1/2、1/3、1/4葉片干物質轉運率2年的平均值分別達到28.8%、22.4%、20.4%和22.5%、21.5%、17.5%,可見減源程度越大,干物質的轉運率越高,但干物質轉運率并非越高越好,劉克禮等[27]研究指出春玉米向籽粒轉移的營養體干物質比率應控制在20%以下,超過20%會導致葉片早衰,籽粒灌漿期縮短,產量下降。可見,只有適當提高營養器官干物質轉運率才有利于產量的進一步提高。
氮、磷、鉀養分轉運與吸收是籽粒養分積累的兩大來源,其含量高低直接影響著作物生長發育狀況,從而影響作物的產量[28]。本研究結果表明,不同種植密度玉米葉片和莖稈中氮、磷、鉀養分的轉運率及養分轉運貢獻率對花后不同程度減源處理反應較敏感。與對照相比,所有減源處理均提高了莖稈和剩余葉片氮、磷、鉀養分轉運率,減源程度越大,養分轉運率越高。但前人研究已證實,若灌漿期從營養器官中轉移過高的氮素會導致玉米葉片衰老進程加快、光合能力下降[29]。有關籽粒養分的積累,先前的研究發現密植條件下適當去掉玉米植株穗位上部2片葉,降低了籽粒總氮積累量[30]。本研究中發現低密度下,不同程度減源降低了籽粒中氮、磷、鉀養分的積累;而在高密度下適當減源,籽粒中氮、磷、鉀的積累量有所提高,減源1/4處理氮、磷、鉀養分積累2年均值分別比對照提高11.8%、6.9%、6.1%,而減源1/2、1/3處理,籽粒氮、磷、鉀積累量兩年均值分別比對照降低20.4%、23.4%、20.0%和10.3%、15.6%、16.0%。據此,高密度T3處理下更高的氮、磷、鉀積累可以解釋為適當減源促進了營養器官營養元素向籽粒的轉運,同時在灌漿期間可能為根系提供了更多的光合產物,增加了根系對氮、磷、鉀養分的吸收,從而提高了成熟期籽粒養分積累量,最終獲得了更高的籽粒產量。而關于減源對密植玉米葉源光合性能和根源吸收特性的協調機制研究將是我們以后重點開展的工作。
本研究對玉米高產研究有兩方面借鑒意義,一是可為耐密性品種選育提供一定的理論基礎,在生產中我們將盡可能選育葉片較小的耐密性品種;其次是在栽培技術上我們可以通過合理增加密度、在高密群體下應用化學物質來減少葉面積的無效生長,例如在適宜的時間噴施適當濃度的植物生長調節劑等。
高密度玉米群體存在葉片冗余,適當減少葉源量(剪葉1/4)促進了營養器官干物質和氮、磷、鉀營養元素向籽粒的合理轉運,提高了成熟期籽粒氮、磷、鉀營養元素的積累量,顯著提高產量。因此,在玉米生產中合理增加密度,在高密度群體下適當調減葉源量,是春玉米進一步高產和養分高效的有效途徑。
[1] 曹玉軍, 呂艷杰, 王曉慧, 魏雯雯, 姚凡云, 劉春光, 王立春, 王永軍. 基于Hybrid-maize 模型的吉林省不同生態區玉米產量潛力研究. 中國生態農業學報, 2016, 24(7): 926-934.
CAO Y J, Lü Y J, WANG X H, WEI W W, YAO F Y, LIU C G, WANG L C, WANG Y J. Analysis of yield potential of maize in different ecological regions in Jilin Province using Hybrid-maize model., 2016, 24(7): 926-934. (in Chinese)
[2] 王立春, 邊少鋒, 任軍, 劉武仁. 提高春玉米主產區玉米單產的技術途徑研究. 玉米科學, 2010, 18(6): 83-85.
WANG L C, BIAN S F, REN J, LIU W R. Study on technique way to increase unit area yield in the main production zone of spring maize.2010, 18(6): 83-85. (in Chinese)
[3] 趙松嶺, 李鳳民, 張大勇, 段舜山. 作物生產是一個種群過程. 生態學報, 1997, 17(1): 100-104.
ZHAO S L, LI F M, ZHANG D Y, DUAN S S. Crop production is a population process., 1997, 17(1): 100-104. (in Chinese)
[4] TOKATLIDIS I.S, KOUTROUBAS S.D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability., 2004, 12: 103-114.
[5] 馮海娟, 張善平, 馬存金, 劉鵬, 董樹亭, 趙斌, 張吉旺, 楊今勝. 種植密度對夏玉米莖稈維管束結構及莖流特性的影響. 作物學報, 2014, 40(8): 1435-1442.
FENG H J, ZHANG S P, MA C J, LIU P, DONG S T, ZHAO B, ZHANG J W, YANG J S. Effect of plant density on microstructure of stalk vascular bundle of summer maize (L.) and its characteristics of sap flow., 2014, 40(8): 1435-1442. (in Chinese)
[6] 衛麗, 熊友才, 馬超, 張慧琴, 邵陽, 李樸芳. 不同群體結構夏玉米灌漿期光合特征和產量變化. 生態學報, 2011, 31(9): 2524-2531.
WEI L, XIONG Y C, MA C, ZHANG H Q, SHAO Y, LI P F. Photosynthetic characterization and yield of summer corn (L.) during grain filling stage under different planting pattern and population densities., 2011, 31(9): 2524-2531. (in Chinese)
[7] FATEMEH F, MANI M, SHAHRAM L. The effect of source-sink restriction and plant density changes on the role of assimilate remobilization in corn grain yield., 2013, 5(20): 2459-2465.
[8] ROSSINI M A, MADDONNI G A, OTEGUI M E. Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: variability in plant and ear growth., 2011, 121: 373-380.
[9] 韓明春, 吳建軍, 王芬. 冗余理論及其在農業生態系統管理中的應用. 應用生態學報, 2005, 16(2): 375-378. HAN M C, WU J J, WANG F. Redundancy theory and its application in agro-ecosystem management.2005, 16(2): 375-378. (in Chinese)
[10] 劉志全, 徐曉敏, 沈海波, 孫俊華, 沈芳玉, 車樹平, 王雙越, 路立平. 高密度栽培條件下玉米剪葉處理對產量構成的影響. 玉米科學, 2009, 17(6): 74-75. LIU Z Q, XU X M, SHEN H B, SUN J H, SHEN F Y, CHE S P, WANG S Y, LU L P. Effects of leaf cutting treatment to maize yield under the high plant population cultivation condition., 2009, 17(6): 74-75. (in Chinese)
[11] LIU T N, GU L M, DONG S T, ZHANG J W, LIU P, ZHAO B. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density., 2015, 170(1): 32-39.
[12] XUE J, GOU L, SHI Z G, ZHAO Y S, ZHANG W F. Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength., 2017, 16(1): 85-96.
[13] 楊恒山, 張玉芹, 徐壽軍, 李國紅, 高聚林, 王志剛. 超高產春玉米干物質及養分積累與轉運特征. 植物營養與肥料學報, 2012, 18(2): 315-323.
YANG H S, ZHANG Y S, XU S J, LI G H, GAO J L, WANG Z G. Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize., 2012, 18(2): 315-323. (in Chinese)
[14] 戴明宏, 趙久然, 楊國航, 王榮煥, 陳國平. 不同生態區和不同品種玉米的源庫關系及碳氮代謝. 中國農業科學, 2011, 44(8):1585-1595.
DAI M H, ZHAO J R, YANG G H, WANG R H, CHEN G P. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties., 2011, 44(8): 1585-1595. (in Chinese)
[15] 牟會榮, 姜東, 戴廷波, 曹衛星. 遮光對小麥植株氮素轉運及品質的影響. 應用生態學報, 2010, 21(7): 1718-1724.
MOU H R, JIANG D, DAI T B, CAO W X. Effects of shading on the nitrogen redistribution in wheat plant and the wheat grain quality., 2010, 21(7): 1718-1724. (in Chinese)
[16] 于吉琳, 聶林雪, 鄭洪兵, 張衛健, 宋振偉, 唐建華, 林志強, 齊華. 播期與密度對玉米物質生產及產量形成的影響. 玉米科學, 2013, 21(5): 76-80.
YU J L, NIE L X, ZHENG H B, ZHANG W J, SONG Z W, TANG J H, LIN Z Q, QI H. Effect of matter production and yield formation on sowing date and density in maize., 2013, 21(5): 76-80. (in Chinese)
[17] 孫永健, 孫園園, 劉樹金, 楊志遠, 程洪彪, 賈現文, 馬均. 水分管理和氮肥運籌對水稻養分吸收、轉運及分配的影響. 作物學報, 2011, 37(12): 2221-2232.
SUN Y J, SUN Y Y, LIU S J, YANG Z Y, CHENG H B, JIA X W, MA J. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice., 2011, 37(12): 2221-2232. (in Chinese)
[18] 戴明宏, 陶洪斌, 王利納, 王璞. 不同氮肥管理對春玉米干物質生產分配及轉運的影響. 華北農學報, 2008, 23(1) :154-157.
DAI M H, TAO H B, WANG L N, WANG P. Effects of different nitrogen managements on dry matter accumulation, partition and transportation of spring maize (L.)., 2008, 23(1): 154-157. (in Chinese)
[19] Román A S, Ignacio A, Roxana S, Gustavo A S. Understanding grain yield responses to source-sink ratios during grain filling in wheat and barley under contrasting environments., 2013, 150(15): 42-51.
[20] 許蓓蓓, 尤翠翠, 丁艷鋒, 王紹華. 源庫調節對常規粳稻花后營養器官碳水化合物及氮磷鉀轉運的影響. 中國農業科學, 2016, 49(4): 643-656.
XU B B, YOU C C, DING Y F, WANG S H. Effect of source-sink manipulation on translocation of carbohydrate and nitrogen, phosphors, potassium in vegetative organs of conventionalrice after anthesis., 2016, 49(4): 643-656. (in Chinese)
[21] 曹國軍, 劉寧, 李剛, 杜立平, 陳世紀, 李可. 超高產春玉米氮磷鉀的吸收與分配. 水土保持學報, 2008, 22(2): 198-201.
CAO G J, LIU N, LI G, DU L P, CHEN S J, LI K. Study on absorption and distribution of nitrogen phosphorus and potassium in super-high yield spring maize., 2008, 22(2): 198-201. (in Chinese)
[22] 楊吉順, 高輝遠, 劉鵬, 李耕, 董樹亭, 張吉旺, 王敬鋒. 種植密度和行距配置對超高產夏玉米群體光合特性的影響. 作物學報, 2010, 36(7): 1226-1233.
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn., 2010, 36(7): 1226-1233. (in Chinese)
[23] 楊今勝, 王永軍, 張吉旺, 劉鵬, 李從鋒, 朱元剛, 郝夢波, 柳京國, 李登海, 董樹亭. 三個超高產夏玉米品種的干物質生產及光合特性. 作物學報, 2011, 37(2): 355-361.
YANG J S, WANG Y J, ZHANG J W, LIU P, LI C F, ZHU Y G, HAO M B, LIU J G, LI D H, DONG S T. Dry matter production and photosynthesis characteristics of three hybrids of maize (L.) with super-high-yielding potential., 2011, 37(2): 355-361. (in Chinese)
[24] 郝夢波, 王空軍, 董樹亭, 張吉旺, 李登海, 劉鵬, 楊今勝, 柳京國. 高產玉米葉片冗余及其對產量和光合特性的影響. 應用生態學報, 2010, 21(2): 344-350.
HAO M B, WANG K J, DONG S T, ZHANG J W, LI D H, LIU P, YANG J S, LIU J G. Leaf redundancy of high-yielding maize (L.) and its effects on maize yield and photosynthesis., 2010, 21(2): 344-350. (in Chinese)
[25] 黃智鴻, 王思遠, 包巖, 梁煊赫, 孫剛, 申林, 吳春勝. 超高產玉米品種干物質積累與分配特點的研究. 玉米科學, 2007, 15(3): 95-98.
HUANG Z H, WANG S Y, BAO Y, LIANG X H, SUN G, SHEN L, WU C S. Studies on dry matter accumulation and distributive characteristic in super high-yield maize., 2007, 15(3): 95-98. (in Chinese)
[26] ZHANG Y H, SUN N N, HONG J P, ZHANG Q, WANG C, XUE Q W, ZHOU S L, HUANG Q, WANG Z M. Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat., 2014, 13(8): 1680-1690.
[27] 劉克禮, 劉景輝. 春玉米干物質積累分配與轉移規律的研究. 內蒙古農牧學院學報, 1994, 15(1) : 1-9.
LIU K L, LIU J H. A study on the regularity of accumulation, distribution and translation of dry matter in spring maize., 1994, 15(1): 1-9. (in Chinese)
[28] 王宜倫, 李潮海, 何萍, 金繼云, 韓燕來, 張許, 譚金芳. 超高產夏玉米養分限制因子及養分吸收積累規律研究. 植物營養與肥料學報, 2010, 16(3): 559-566.
WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X. TAN J F. Nutrient restrictive factors and accumulation of super-high-yield summer maize., 2010, 16(3): 559-566. (in Chinese)
[29] LIU T N, HUANG R D, CAI T, HAN Q F, DONG S T. Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density., 2017, 7: 39601.
[30] 嚴云, 廖成松, 張福鎖, 李春儉. 密植條件下玉米冠根生長抑制的因果關系. 植物營養與肥料學報, 2010, 16(2): 257-265.
YAN Y, LIAO C S, ZHANG F S, LI C J. The causal relationship of the decreased shoot and root growth of maize plants under higher plant density., 2010, 16(2): 257-265. (in Chinese)
Effects of Sources Reduction on Accumulation and Remobilization of Dry Matter and Nitrogen, Phosphors and Potassium of Spring Maize Under Different Densities After Flowering
CAO YuJun1,3, Wu Yang1, LIU ZhiMing1, CUI Hong1,2, Lü YanJie1, YAO FanYun1, WEI WenWen1, WANG YongJun1
(1Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/State Engineering Laboratory of Maize, Changchun 130033;2College of Agricultural Resources and Environment, Jilin Agricultural University, Changchun 130118;3College of Agriculture, Northeast Agricultural University, Haerbin 150030)
【】The effects of source reduction on yield, dry matter, and nutrient accumulation and transport of nitrogen, phosphorus, and potassium under different density populations were discussed in this study, in order to provide more effective ways for further improvement of maize yield and nutrient use efficiency and to provide a reference for the selection and breeding of density-resistant varieties.【】The cultivar Xianyu335 was used for experimental material, which was planted most popularly in local production. A split plot design with three replicates was used in the experiment. The main plot was different densities with 60 000 plants/hm2(conventional density) and 90 000 plants/hm2(high density), respectively; the subplot was different sources reduction intensity by cutting the leaves of each plant by 1/2 (T1), 1/3 (T2), 1/4 (T3) and control (without cutting leaves) at silking stage. Dry matter weight and the contents of nitrogen, phosphorus, and potassium were determined, and dry matter and nutrient accumulation and transport were calculated. 【】Under conventional planting density, the number of kernels per ear, 100-kernel weight, and grain yield were all decreased compared to the control under different levels of source reduction. Among them, the average yield of T1, T2 and T3 were 32.1%, 20.3% and 11.9% lower than that of the control in two years, respectively; under high planting density, T3 treatment significantly increased the number of kernels per ear, which resulted in a significant increase in yield. The average yield in two years in T3 treatment was 7.7% higher than that of control. Compare with the control, the dry matter and the nutrients of nitrogen, phosphorus and potassium transport rate of vegetative organs were increased at different source reduction, the greater the source reduction, the higher the dry matter and nutrient transport rate. Under conventional planting density, the vegetative organs nutrients of nitrogen, phosphorus and potassium transport rate of T1, T2 and T3 were 25.4%, 19.1%, 10.7%, 14.3%, 9.8%, 5.2% and 19.0%, 10.7%, 8.4% higher than the control, respectively. While, under high planting density, the vegetative organs nutrients of nitrogen, phosphorus and potassium transport rate of T1, T2 and T3 were 17.1%, 12.8%, 5.8%, 12.6%, 8.0%, 3.6% and 14.9%, 11.3%, 3.9% higher than the control, respectively. Under conventional planting density, the differences of source reduction reduced the accumulation of nitrogen, phosphorus and potassium nutrients in grains. While, under high planting density, the accumulation of nitrogen, phosphorus and potassium nutrients in grains were increased at an appropriate source reduction level. The accumulation of nitrogen, phosphorus, and potassium were 11.1%, 6.9%, and 6.1% higher, respectively, than the control on average of two years under T3 treatment. But the nutrients of nitrogen, phosphorus and potassium under T1 and T2 treatments were 20.4%, 23.4%, 20.0% and 10.3%, 15.6%, 16.0% lower than the control, respectively.【】Leaf redundancy existed in dense maize population, reduction the amount of leaf sources appropriately (cutting all the leaves by 1/4 of whole plant) promoted the dry matter, nitrogen, phosphorus and potassium nutrients transport rate from vegetative organs to the grain, and increased the accumulation of nitrogen, phosphorus, and potassium nutrients in grains at mature stage. Therefore, increasing the density reasonably should be adopted in maize production. Meanwhile, the appropriate reduction of leaf source volume under high density population should be an effective way to further increase high yield and efficient use of nutrients in spring maize.
spring maize; different densities; leaf area reduction; dry matter; N, P, K accumulation and transport
10.3864/j.issn.0578-1752.2019.20.005

2018-10-13;
2018-12-20
國家重點研發計劃(2016YFD0300103,2017YFD0300603)、國家自然科學基金(31701349)、國家玉米產業技術體系(CARS-02-16)、吉林省農業科技創新工程(CXGC2017ZY015)、吉林省科技發展計劃(20160203004NY)
曹玉軍,E-mail:caoyujun828@163.com。
王永軍,E-mail:yjwang2004@126.com
(責任編輯 楊鑫浩)