趙然,蔡曼君,杜艷芳,張祖新
玉米籽粒形成的分子生物學基礎
趙然,蔡曼君,杜艷芳,張祖新
(華中農業大學作物遺傳改良國家重點實驗室,武漢 430070)
玉米單穗籽粒產量由穗粒數和粒重兩因子組成。單個果穗上所著生的籽粒數與雌花序建成和小花分化密切相關,因此,控制花序形態建成和小花發育的基因可能直接或間接地參與穗粒數調控。玉米成熟籽粒主要由源于母本組織的種皮和經雙受精產生的胚和胚乳組成,且胚和胚乳占成熟籽粒的絕大部分,直接影響粒重。文中主要從“CLAVATA(CLV)-WUSCHEL(WUS)負反饋調控途徑、激素及其信號途徑、花器官發育和小花性別決定”等方面總結了花序和小花發育相關基因及其與穗粒數的關系,描述了CLV-WUS途徑中各基因在玉米雌花序上特異性表達的分生組織和基因間的調控關系,總結了生長素、赤霉素、細胞分裂素和獨腳金內酯等植物激素的相互作用網絡,以及已克隆的玉米花器官發育相關基因及其功能。從“線粒體基因轉錄本的加工和編輯、質體基因的轉錄和翻譯及細胞核RNA轉錄與加工”3個方面總結了已克隆的影響胚和胚乳發育的相關基因,其中,大部分基因編碼線粒體或質體定位的PPR蛋白。值得關注的是,近年來,研究發現了通過調節細胞核內RNA轉錄和加工而影響玉米籽粒發育的新途徑。文章作者在基因水平上對玉米籽粒形成的分子生物學基礎進行了簡要總結,為進一步深入解析玉米產量形成的分子調控網絡提供參考。同時,也就該研究領域今后可能的研究方向進行了討論。
玉米;穗粒數;粒重;花序;小花;胚;胚乳
玉米(s L.)籽粒是重要的糧食、飼料、工業和能源原料,在保障糧食安全、經濟發展及緩解能源危機等方面起重要作用。因而,玉米籽粒產量形成的生物學基礎解析吸引了許多科學家的關注,成為遺傳學、發育生物學和作物育種學等學科的重大科學問題。隨著群體遺傳學、基因組學、發育生物學和分子生物學等學科的理論和技術發展及其在玉米研究中的應用,玉米籽粒產量及其相關性狀形成的生物學基礎等研究領域取得了重要進展。由于玉米單穗籽粒產量由穗粒數和粒重兩個因子組成,本文將主要圍繞穗粒數和粒重發育相關基因及其調控網絡,簡要介紹國內外在這一領域所取得的主要成果。
玉米果穗是雌花序上各類分生組織按其固有模式分化和發育的最終結果?;ㄐ蚍稚M織(inflorescence meristem,IM)產生數目不等的成對小穗分生組織(spikelet-paired meristem,SPM),而每個SPM進一步分化出2個小穗分生組織(spikelet meristem,SM),隨著小花分生組織(floral meristem,FM)的產生,花序分化終止,這一過程稱之為花序發育;FM經花器官分化和發育形成小花,這一過程稱之為小花發育[1]。授粉后,小花經胚和胚乳發育形成籽粒。由此可見,花序和小花中各類分生組織的正常起始和發育與花序上最終形成的小花數目和每穗籽粒數密切相關。由于花序建成和小花發育是籽粒產量的生物學基礎,因而,這一研究領域吸引了許多科學家的關注。目前,對玉米花序建成和小花發育調控的認知主要來自于對突變體的深入分析。已鑒定的控制花序上各類分生組織分化和花器官發育的基因分別參與了以下幾條調控途徑。
參與該途徑的基因,通過調控分生組織中干細胞分裂和分化的平衡,維系干細胞數目并源源不斷產生新的組織或器官[2-3]。玉米中參與該途徑的基因包含:分別編碼擬南芥CLAVATA1(CLV1)、CLV2和CLV3同源蛋白的基因()[4]、()[5]和[6],編碼CLV3/EMBRYO-SURROUNDING REGION(CLE)類信號肽分子的基因()、和[6-7],以及編碼下游效應分子的基因()[8]和Z()等[9]。這一途徑中各基因間的相互關系已有許多綜述,不再贅述,僅以圖1作簡單描述(圖1)。與擬南芥中形成受體復合體不同,玉米TD1和FEA2可能在不同的遺傳途徑發揮作用。
近年來研究證實,編碼SQUAMOSA promoter binding protein(SBP)轉錄因子的()和也參與花序分生組織活性的調控。和主要在SPM的外緣表達,或單突變體的花序無明顯異常表型,而雙突變體的雌花序分化提前終止、頂部異常膨大、穗行數增加、果穗變短,顯示出這兩個基因功能的部分冗余[10]。過表達或的植株其花序分化也受到抑制并提前終止、花序變短、穗粒數減少。同時,也是GIF1(GROWTH-REGULATING FACTOR(GRF)-INTERACTING FACTOR 1)的靶基因,其表達受GIF1調控。功能喪失突變體也表現出與雙突變體相似的花序膨大表型[11]。其次,UB3還可結合到()和()啟動子,調控和的表達,進而參與細胞分裂素(CKs)合成和信號途徑[12]。另外,也可通過調控和參與到CLV-WUS途徑來調節花序分生組織的大小和小穗原基的起始,從而調控穗行數[12]。這些研究描繪了一條以為中心調控花序發育的新途徑,即正調控,而負調控,通過連接CLV-WUS途徑(圖1)。
盡管玉米CLV-WUS途徑中關鍵基因的強突變導致雌穗頂端扁平、穗行數增加、穗長變短、單穗籽粒產量下降,但是,和弱等位突變能維持分生組織正常發育,并通過增加IM大小和SPM原基起始數目來增加穗行數,最終導致穗粒數增加,提高了單穗籽粒產量[6,8]。而在自交系群體中,編碼區的一個A/G變異引起第220位的絲氨酸變為天冬酰胺,該變異位點與穗行數關聯[10]。另外,在下游約60 kb位置,有一個主效QTL。為一段非編碼DNA,其中一個轉座子片段的插入/缺失可調節的表達水平,進而導致穗行數的數量變異[13]。這些研究說明,玉米花序發育關鍵基因的弱突變可以引起籽粒產量相關性狀的數量變異,基因組上非編碼區的變異也可通過調節花序發育關鍵基因的表達水平,進而引起籽粒產量相關性狀的數量變異。
植物激素及其信號也參與雌花序上各類分生組織的確定性和活性的調控。這些基因基于其作用途徑大致分為:1)生長素合成及其信號相關基因。這些基因包括生長素合成相關基因()和()(圖2-a)、生長素運輸和定位相關基因()、生長素信號相關基因、和(圖2-b)編碼色氨酸氨基轉移酶,催化色氨酸向吲哚-3-丙酮酸的轉變[14];編碼一個單子葉植物特有的黃素單加氧酶[15]。和突變體均表現為雌雄花序上IM分化活性下降、各類次生分生組織分化受到抑制、花序分化提前終止、小花數目明顯減少[14]。編碼一個與擬南芥PINOID同源的絲氨酸/蘇氨酸蛋白激酶,可與PIN-FORMED1a(ZmPIN1a)和一個bHLH轉錄因子BARREN STALK1(BA1)互作[16-17],參與生長素極性運輸。突變體雌雄穗分枝難以分化,小穗分生組織減少[18]。可見,主要參與IM分化和SPM活性維持。另外,和均編碼生長素信號途徑的AUX/IAA蛋白,其突變體表現為與相似的表型,雌雄穗分枝數和小花數均受到嚴重抑制[19-20]。而突變體無雌穗、且雄穗無分支和小穗,表明在營養和生殖發育中調節次生分生組織的起始;的這些功能受BIF1、BIF2和BIF4的調控[20-21]。除此之外,編碼一個bZIP轉錄因子,通過調控生長素響應因子(ARF)參與生長素信號途徑、進而調控雌花序SPM的確定性[22]。而()編碼的谷氧還蛋白(GRX)能與FEA4互作,形成MSCA1-FEA4-ARF的生長素信號調控途徑[23]。因此,在玉米中可通過影響生長素合成、運輸及信號相關基因,調控花序發育,進而影響籽粒產量。2)激素交互作用的關鍵基因。()編碼一個CKs誘導的類型A響應調節子,在擬南芥中可正調控生長素信號、負調控細胞分裂素信號[24]。在玉米突變體中,生長素水平和的表達均降低,導致莖頂端分生組織(shoot apical meristem,SAM)膨大,葉原基起始推遲,說明在玉米SAM中也是生長素水平和運輸的正調控因子,揭示了組織和器官發生過程中植物激素平衡調節的重要性[25]。是水稻重要株型和產量基因()的同源基因[26-27]。在水稻中,IPA1既可與赤霉素(GAs)抑制因子DELLA蛋白互作干擾DELLA蛋白的降解,抑制赤霉素信號轉導[28],又與獨腳金內酯(SL)信號通路中的關鍵負調控因子Dwarf 53(D53)蛋白直接互作抑制的轉錄激活活性;IPA1還能直接結合的啟動子并激活的表達,形成負反饋調節[29]。然而,/在水稻中的這一負反饋調節途徑在玉米中是否存在還有待進一步研究。不過,玉米在水稻表達中則參與了CKs的合成和信號途徑,進而調控分支分生組織的起始[12],由此可見,參與多種激素信號途徑,可能是一個連接激素信號和CLV-WUS途徑的關鍵因子。隨著測序技術的發展,基于轉錄組學分析揭示了CKs和GAs在玉米花序發育中的作用及其調控關系,發現()和()可能參與GA合成和信號途徑:即RA1結合()正調控表達,也負調控GA信號抑制子(),時空特異性地激活GA合成和代謝相關基因進而調控GA水平,而KN1和SPY則能正調控CKs[30](圖2-c)。這些結果說明了花序建成和發育中激素作用的重要性和復雜性。

a:SPI1和VT2調控色氨酸依賴的生長素合成。b:生長素轉運與信號相關基因及其調控途徑。c:UB3介導的激素交互作用。表示正調控。表示負調控
在發育生物學上,玉米穗粒數是穗行數與行粒數的集合。它們的形成需經歷花序形態建成和小花發育2個過程,前者決定花序上所分化的小花數目,后者決定小花育性和授粉結實潛力。而小花分生組織分化產生的花器官分生組織及其有序性地發育是小花發育的主要生物學事件,因此,花器官分生組織的起始和發育也與穗粒數密切相關。玉米雌、雄小花分生組織均能分化出1個外稃、1個內稃、2個漿片、3個雄蕊和3個心皮原基,其中,內外稃等同于雙子葉植物花的萼片,漿片等同于花瓣,說明玉米花器官發育也遵循“ABCDE”模型[31]。盡管每朵玉米小花均能分化出兩性花所具有的花器官原基,但成熟的玉米小花仍發育成為單性花,即雄花中心皮發育被抑制、而雌花中雄蕊發育被抑制[32],形成了同一小花中雌蕊或雄蕊選擇性發育的特征。這一特征也是玉米與其他禾谷類作物及模式植物擬南芥在小花發育調控上的區別,使得玉米小花成為花器官發育研究的理想材料。
迄今為止,在玉米中所鑒定到的花器官發育相關基因,主要包含1個A類基因Zea APETALA Homolog1(ZAP1)[33],4個B類基因SILKY1(SI1)[31]、Zea mays MADS16 (ZMM16)/STERILE TASSEL SILKY EAR1(STS1)[34]、ZMM18和ZMM29[35],3個C類基因Zea AGAMOUS1(ZAG1)[36]、ZMM2[37]和ZMM23[38],3個D類基因ZAG2[36]、ZMM1[38]和ZMM25[38],以及4個E類基因ZAG3/-()[40]、ZAG5[41]、ZMM8和ZMM14[42-44](圖3-a),其中,僅有SI1、ZMM16和BDE的功能解析最清楚。SI1在雄蕊和漿片中特異表達,其突變后導致雄蕊轉換為心皮、漿片轉換為類似于內外稃的結構,因而,si1突變體表現為雄性不育[31]。ZMM16與擬南芥B類基因APETALA3/ DEFICIENS同源,在雄蕊原基、雄蕊和漿片中特異表達。在zmm16自然突變體中,雄花漿片和雄蕊轉變成內外稃、雌花中本應退化的雄蕊轉變成心皮,雌、雄小花均不育[34]。BDE在小花分生組織、漿片、心皮原基和內稃中均有表達,在內珠被和胚珠原基表達水平最高。BDE蛋白可與ZAG1互作調控小花分生組織的產生和花器官分生組織的起始與活性維持。在bde突變體中,雄花產生額外的花器官、雄蕊發育受到部分抑制、而雌蕊發育異常激活而形成花絲,雌花產生內外稃的結構、一個胚珠上生長出多個花絲[40]。這些“ABCDE”模型中的同源基因,由于直接調節花器官的發育而影響小花的育性,因此也影響授粉后果穗上的籽粒數。
除“ABCDE”花器官發育模型相關基因外,對玉米雌、雄性器官選擇性發育的調控研究,豐富了對植物小花性別決定的認識??刂品稚M織確定性的基因在性別決定中扮演重要角色。()()編碼APETALA2(AP2)/ERF轉錄因子,突變體的小穗分生組織確定性喪失,產生額外小花,并且雄花序部分小花因心皮發育產生花絲[45],與其功能相似的同源基因()則具有積加效應[46]。而編碼的miR172靶向和,負調控它們的表達[47](圖3-b)。另外,研究發現茉莉酸(JAs)和油菜素內酯(BRs)可通過調控小花的性別進而調節小花育性和授粉潛力。目前,玉米中已克隆了6個JAs合成和代謝相關基因,其中,編碼一個脂氧化酶[48]、編碼一種單子葉植物所特有的短鏈乙醇脫氫酶[49]和是2個同源基因,均編碼12-氧-植物二烯酸還原酶(12-oxo-phytodienoic acid reductase)[50],這4個基因共同參與JA的生物合成。單突變體、和雙突變體均影響JA生物合成,導致JA水平下降,雄穗上部分小花產生花絲[47-49]。顯性突變體的雄花序上也發育出雌性小花、產生花絲。編碼一個ZmCYP94B1蛋白,參與JA代謝,即負調控JA水平[51](圖3-b)。由此可見,高水平的JA是玉米雄花中雌蕊退化或者抑制心皮發育所必要的。那么,玉米雌花中控制雄蕊退化或者保持雌蕊發育的關鍵基因是什么?編碼一個尿苷二磷酸糖基轉移酶,該酶可阻斷JA生物合成;在突變體中,其雄穗發育正常、但雌穗花絲發育受到抑制[52]。雙突變體雌穗花絲恢復,而雄穗大多數小花也能發育雄蕊[53];而雙突變體的雌穗無花絲,雄穗產生少量花絲[51]。結果表明,是雌花中雌蕊發育所必需的,并且阻斷JA合成有利于雌蕊發育。除了JA外,BR也在玉米小花性別決定中起著重要作用。例如,()是一個BR生物合成途徑的酶編碼基因,在花藥發育整個過程中均有表達、也在心皮原基表層細胞中表達直至其退化;突變體的雄穗部分小花花藥退化而花絲發育,并有類似內外稃的變形葉,成熟植株的雄穗上著生有種子,突變體的雌穗和雌花發育正常[54]。()也參與BR生物合成途徑,其突變體表現為與相似的表型[55]。這說明BR在雄蕊和雌蕊發育中起著不同作用,即BR促進雄蕊發育而抑制心皮分生組織的分化,而調節BR在玉米雌花和雄花發育中不同功能的機理至今未知。
近年來,沉默乙烯合成途徑的(),能增加轉基因玉米家系在缺水和低氮條件下的產量[56];過表達乙烯信號途徑的組分AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE(ARGOS)可增加轉基因家系和雜交種在正常和干旱條件下的穗長、穗粒數及籽粒產量[57]。結果表明,乙烯水平和信號或直接參與花序和小花發育、或通過參與玉米對脅迫的響應間接地影響花序和小花發育。這些發現也指出一條“通過調控乙烯合成和信號進而提高玉米抗性和籽粒產量”的新途徑。

a:玉米花器官發育“ABCDE”模型調控基因。不同色塊代表不同類型的花器官調控基因,下方標注代表不同花器官及其對應輪數。A類基因決定第一輪內稃和外稃的形成,第二輪和第三輪漿片和雄蕊的形成分別由A+B和B+C基因調控,第四輪心皮發育則由C類基因單獨調控。D類基因主要在胚珠發育中起作用,E類基因則參與所有的花器官發育調控。b:小花性別決定基因調控網絡。表示正調控。表示負調控
玉米籽粒由來自母本的種皮、經雙受精產生的二倍體胚和三倍體胚乳3種組織組成[58],其中,胚和胚乳分別占成熟籽粒重量的8%—10%和80%—85%,可見,胚和胚乳發育直接影響籽粒大小和粒重。
為研究胚和胚乳發育的遺傳調控,科學家鑒定到了許多胚和胚乳發育突變體,并將這些突變體命名為()[59-60]或()[61-62]或()[63]。其中,突變體是中極端表型類型,其胚和胚乳發育嚴重遲滯,成熟突變籽粒被正常籽粒擠壓成紙片狀[63]。另外,與不同,()突變體影響胚形態建成,導致籽粒不能正常萌發,胚乳可正常發育但籽粒變小[64-65]。近年來,一批突變體基因的鑒定與分離,從而對玉米胚和胚乳發育的遺傳基礎有了一個較為系統的認識。
在已克隆的籽粒發育突變體中,大多數基因編碼PPR蛋白家族成員。已克隆的6個基因編碼線粒體靶向的PPR蛋白,分別參與線粒體基因內含子剪切([66]、[67]、[68])或RNA編輯([69]、[70]和[71])。同樣,已克隆的12個突變體基因中,10個編碼線粒體靶向的PPR蛋白,分別參與內含子剪切([72][73][74][75]和[76])、RNA編輯([77]、[78]、[79]和[80])和線粒體轉錄本的表達調控([81])。此外,也編碼1個PPR蛋白,其功能為線粒體轉錄后的編輯[59]。這些突變體的線粒體電子傳遞鏈復合體不能正常組裝,導致電子傳遞、ATP合成受阻,因而,這些基因突變后會強烈影響胚乳細胞發育這個十分耗能的進程[82],同時也說明玉米胚和胚乳發育依賴于PPR蛋白靶向線粒體基因的轉錄后加工。
在擬南芥中,30%的胚發育突變體由質體靶向蛋白的功能異常所引起[83],在一定程度上說明質體在胚形態建成過程中扮演舉足輕重的角色。在玉米中,影響胚發育的也編碼質體靶向蛋白,并通過不同的途徑影響胚發育。如編碼一個PPR蛋白,PPR8522可能通過與靶向質體的σ因子(SIG6)互作,影響依賴于質體編碼的RNA polymerase進行轉錄的基因表達,進而影響類囊體結構導致胚致死[84]。編碼質體起始因子IF3,影響質體蛋白的合成[65]。編碼一個GTP酶,功能缺失后降低16S rRNA和質體核糖體基因的表達,影響核糖體組裝,最終影響質體蛋白翻譯[85]。編碼DNA/RNA結合蛋白WHIRLY1(WHY1),該蛋白在穩定質體基因組及核糖體形成過程中起著重要作用[86]。另外,編碼一個質體核糖體蛋白PRPS9(plastid 30S ribosomal protein S9),與一樣,其功能缺失只影響胚的發育[87]。結果表明,質體也在維持玉米胚發育過程中起著必不可少的作用。
近年來,從所分離的幾個突變體基因中了解玉米籽粒發育遺傳調控的新途徑。如()編碼一個PLATZ(plant AT-rich sequence and zinc binding)家族蛋白,該蛋白可與RNA聚合酶Ⅲ的2個亞基結合,調控tRNA和5S rRNA轉錄。由于只在淀粉胚乳細胞中表達,其突變后特異影響胚乳發育[88]。編碼一個RNA外切酶,通過影響U6 snRNA 3′-末端的加工,導致前體mRNAs剪切異常,最終影響籽粒和植株發育[89]。編碼RRM_RBM48型RNA結合蛋白,與其他剪接體組分相互作用參與前體mRNA剪接調節,它的突變顯著改變表達基因的選擇性剪接,使得U12型內含子被保留于轉錄本中,表現出小粒和幼苗致死表型[90]。而Urb2作用于前體rRNA加工,在突變體中,前體rRNA中間產物顯著富集,很多核糖體相關基因的表達水平也受到影響,籽粒發育和植株生長都受到抑制[87]。結果表明,這些基因直接參與到了細胞核內mRNA或者rRNA加工這一基礎生物學過程,因此,細胞核RNA轉錄加工對籽粒發育有著深遠影響[91]。此外,則編碼SISTER CHROMATID COHESION PROTEIN 4(SCC4)的同系物,突變可破壞有絲分裂細胞周期和核內復制,導致胚乳和胚胎致死[92]。這項新的發現揭示了玉米有絲分裂染色體分離和內核發育的異常,也可導致籽粒發育缺陷。由于上述基因參與許多生物學過程的調控,這些基因突變常會影響包含籽粒發育在內的、廣泛的生物學性狀,顯示出基因功能的多效性。
基于突變體的遺傳分析,科學家已鑒定并分離了一批玉米花序、小花和籽粒發育相關基因,對許多基因的作用機理和調控途徑有了深入研究,但相較于模式植物擬南芥和模式作物水稻,玉米中所克隆的基因數目相對較少,而直接控制穗粒數和粒重的基因數目更少。為深入解析玉米產量及產量相關性狀形成的生物學基礎,進一步鑒定并克隆更多新的產量及產量相關性狀的基因、闡明多基因之間的互作關系、挖掘控制產量相關性狀的關鍵節點基因并解析其調控網絡、探究發育相關基因的自然變異與產量及產量相關性狀的關系等,將是今后一定時期內玉米遺傳學研究的重點和熱點領域。玉米籽粒著生于雌穗,雌穗上所形成的籽粒其實質是花序和小花中各類分生組織起始、分化和發育以及授粉后的籽粒發育等生物學過程的最終結果。經長期研究已鑒定到了一批花序和小花發育相關的基因,特別是鑒定到了許多參與CLV-WUS負反饋途徑、“ABCDE”模型及激素合成和信號途徑等的關鍵基因,并對這些基因在玉米花序和小花發育中的生物學功能和作用機理與其在擬南芥、水稻中的保守性和差異性進行了分析。但是,各類分生組織起始、分化和終止的內外信號、CLV-WUS途徑調控干細胞增殖和分化的上下游基因及其精細調控網絡、小花性別分化的遺傳控制、激素及其交互作用調控花器官特別是雄蕊和心皮分化和發育的分子途徑等研究尚淺,將是玉米發育生物學重點研究領域。在籽粒發育這一研究領域,將進一步鑒定胚和胚乳發育新基因和新調控途徑,重點發掘發育相關基因與粒重的關聯,揭示其自然變異,為粒重遺傳改良提供基因資源。另外,穗粒數、粒型和粒重等也是玉米長期改良的目標性狀,探索控制這些性狀的有利等位基因的產生、在育種過程中的選擇及其演化規律,也是今后重要的研究課題,并將為玉米育種提供理論指導和重要的遺傳資源。
[1] VOLLBRECHT E, SCHMIDT R J. Handbook of maize// BENNETZEN J L, HAKE S, eds.. New York: Springer, 2009: 13-40.
[2] WILLIAMS L, FLETCHER J C. Stem cell regulation in theshoot apical meristem., 2005, 8: 582-586.
[3] SOMSSICH M, JE B I, SIMON R, JACKSON D. CLAVATA- WUSCHEL signaling in the shoot meristem., 2016, 143: 3238-3248.
[4] BOMMERT P, LUNDE C, NARDMANN J, VOLLBRECHT E, RUNNING M, JACKSON D, HAKE S, WERR W.encodes a putative maize ortholog of theleucine-rich repeat receptor-like kinase., 2005, 132(6): 1235-1245.
[5] BOMMERT P, NAGASAWA N S, JACKSON D. Quantitative variation in maize kernel row number is controlled by thelocus., 2013, 45: 334-337.
[6] JE B I, GRUEL J, LEE K, BOMMERT P, AREVALO E D, EVELAND A L, WU Q, GOLDSHMIDT A, MEELEY R, BARTLETT M, KOMATSU M, SAKAI H, J?NSSON H, JACKSON D.Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits., 2016, 48: 785-791.
[7] RODRIGUEZ-LEAL D, Xu C, KWON C T, SOYARS C, DEMESA-AREVALO E, MAN J, LIU L, LEMMON Z H, JONES D S, Van ECK J, JACKSON D P, BARTLETT M E, NIMCHUK Z L, LIPPMAN Z B. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation., 2019, 51(5): 786-792.
[8] Bommert P, Je B I, Goldshmidt A, Jackson D. The maize Gα genefunctions in CLAVATA signaling to control shoot meristem size., 2013, 502: 555-558.
[9] Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher J P, Corcilius L, Payne R J, Bartlett M E, Jackson D.The CLAVATA receptorresponds to distinct CLE peptides by signaling through two downstream effectors., 2018, 7: e35673.
[10] Chuck G S, Brown J, Meeley R, Hake S. Maize SBP-box transcription factorsandaffect yield traits by regulating the rate of lateral primordia initiation., 2014, 111: 18775-18780.
[11] Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, lunde c, hake s, zhang z.() regulates shoot architecture and meristem determinacy in maize., 2018, 30: 360-374.
[12] Du Y, Liu L, Li M, fang s, shen x, chu j, zhang z.regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice., 2016, 214(2): 721-733.
[13] Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z.controls quantitative variation in maize kernel row number., 2015, 11: e1005670.
[14] Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, McSteen P.encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize., 2011, 23: 550-566.
[15] Gallavotti A, Yang Y, Schmidt R J, Jackson D. The relationship between auxin transport and maize branching., 2008, 147: 1913-1923.
[16] Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pe ME, Schmidt R J. The role ofin the architecture of maize., 2004, 432: 630-635.
[17] Skirpan A, Culler A H, Gallavotti A, Jackson D, Cohen J D, McSteen P. BARREN INFLORESCENCE2 interaction with ZmPIN1asuggests a role in auxin transport during maize inflorescence development., 2009, 50: 652-657.
[18] McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X T, Kellogg E, Hake S.encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize., 2007, 144: 1000-1011.
[19] Barazesh S, McSteen P.functions in organogenesis during vegetative and inflorescence development in maize., 2008, 179: 389-401.
[20] Galli M, Liu Q, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L,Gallavotti A.Auxin signaling modules regulate maize inflorescence architecture., 2015, 43: 13372-13377.
[21] Skirpan A, Wu X, McSteen P. Genetic and physical interaction suggest that BARREN STALK1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development., 2008, 55: 787-797.
[22] Pautler M, Eveland A L, LaRue T, Yang F, Weeks R, Lunde C, Je B, Meeley R, Komatsu M, Vollbrecht E, Sakai H, Jackson d.encodes a bZIP transcription factor that regulates shoot meristem size in maize., 2015, 1: 104-120.
[23] Yang F, Bui H T, Pautler M, Llaca V, Johnston R, Lee B H, Kolbe A, SakaiH, Jackson D. A maize glutaredoxin gene,, regulates shoot meristem size and phyllotaxy., 2015, 27(1): 121-131.
[24] Jackson D, Hake S. Control of phyllotaxy in maize by thegene., 1999, 126: 315-323.
[25] Giulini A, Wang J, Jackson D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue., 2004, 430: 1031-1034.
[26] Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, qian q, li j. Regulation ofby OsmiR156 defines ideal plant architecture in rice., 2010, 6: 541-544.
[27] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M.promotes panicle branching and higher grain productivity in rice., 2010, 6: 545-549.
[28] LIU M, SHI Z, ZHANG X, WANG M, ZHANG L, ZHENG K, LIU J, HU X, DI C, QIAN Q, HE Z, YANG D L.Inducible overexpression ofimproves both yield and disease resistance in rice.,2019, 5: 389-400.
[29] SONG X, LU Z, YU H, SHAO G, XIONG J, MENG X, JING Y, LIU G, XIONG G, DUAN J, YAO X, LIU C, LI H, WANG Y, LI JIPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice.,2017, 27: 1128-1141.
[30] Eveland A L, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C, Lewis M W, Kumari S, Hiraga S, Yang F, Unger-Wallace E,Olson a, Hake s, Vollbrecht e, Grotewold e, Ware d, Jackson d. Regulatory modules controlling maize inflorescence architecture., 2014, 3: 431-443.
[31] Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of thegene reveal conservation in floral organ specification between eudicots and monocots., 2000, 5(3): 569-579.
[32] Cheng P C, Greyson R I, Walden D B. Organ initiation and the development of unisexual flowers in the tassel and ear of., 1983,70: 450-462.
[33] Mena M, Mandel M A, Lerner D R, Yanofsky M F, Schmidt R J. A characterization of the MADS-box gene family in maize., 1995, 8(6): 845-854.
[34] Bartlett M E, Williams S K, Taylor Z, DeBlasio S, Goldshmidt A, Hall D H, Schmidt R J, Jackson D P, Whipple C J. The maizeorthologinteracts with the zygomorphy and sex determination pathways in flower development., 2015, 11: 3081-3098.
[35] Münster T, Wingen L U, Faigl W, Werth S, Saedler H, Theissen G. Characterization of three-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses., 2001, 262(1/2): 1-13.
[36] Schmidt R J, Veit B, Mandel M A, Mena M, Hake S, Yanofsky M F. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS., 1993, 5(7): 729-737.
[37] Schreiber D N, Bantin J, Dresselhaus T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence., 2004, 134: 1069-1079.
[38] Theissen G, Strater T, Fisher A, Saedler H. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize., 1995, 156(2): 155-166.
[39] MüNSTER T, DELEU W, WINGEN L U, OUZUNOVA M, CACHARRON J, FAIGL W, WERTH S, KIM J T, SAEDLER H, THEISSEN G. Maize MADS-box genes galore., 2002, 47: 287-301.
[40] Thompson B E, Bartling L, Whipple C, Hall D H, Sakai H, Schmidt R, Hake S.encodes a MADS box transcription factor critical for maize floral development., 2009, 21(9): 2578-2590.
[41] Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. Diversification of C-function activity in maize flower development., 1996, 274(5292): 1537-1540.
[42] CACHARRóN J, SAEDLER H, THEISSEN G. Expression of MADS-box genesandduring inflorescence development ofdiscriminates between the upper and the lower floret of each spikelet., 1999, 209: 411-420.
[43] KOBAYASHI K, MAEKAWA M, MIYAO A, HIROCHIKA H, KYOZUKA J.(), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice., 2010, 511: 47-57.
[44] CIAFFI M, RITA A, ANTONIO O, ENRICO T. Molecular aspects of flower development in grasses., 2011, 24: 247-282.
[45] Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene., 1998, 12(8): 1145-1154.
[46] Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genesand., 2008, 135(18): 3013-3019.
[47] CHUCK G, MEELEY R, IRISH E, SAKAI H, HAKE S. The maizemicroRNA controls sex determination and meristem cell fate by targeting., 2007, 39: 1517-1521.
[48] ACOSTA I F, LAPARRA H, ROMERO S P, SCHMELZ E, HAMBERG M, MOTTINGER J P, MORENO M A, DELLAPORTA S L.is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize., 2009, 323: 262-265.
[49] DeLong A, Calderon-Urrea A, Dellaporta S L. Sex determination geneof maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion., 1993, 74: 757-768.
[50] YAN Y, CHRISTENSEN S, ISAKEIT T, ENGELBERTH J, MEELEY R, HAYWARD A, EMERY R J N, KOLOMIETS M V. Disruption ofandreveals the versatile functions of jasmonic acid in maize development and defense., 2012, 24(4): 1420-1436.
[51] Lunde C, Kimberlin A, Leiboff S, Koo A J, Hake S.overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize., 2019, 2: 114.
[52] Hayward A P, Moreno M A, Howard T P, Hague J, Nelson K, Heffelfinger C, Romero S, Kausch A P, Glauser G, Acosta I F, et a l. Control of sexuality by the-encoded UDP-glycosyltransferase of maize., 2016, 2: e1600991.
[53] IRISH E E, LANGDALE J A, NELSON T M. Interactions between tassel seed genes and other sex determining genes in maize., 1994,15: 155-171.
[54] HARTWIG T, CHUCK G S, FUJIOKA S, KLEMPIEN A, WEIZBAUER R, POTLURI D P V, CHOE S, JOHAL G S, SCHULZ B. Brassinosteroid control of sex determination in maize., 2011, 108(49): 19814-19819.
[55] BEST N B, HARTWIG T, BUDKA J, FUJIOKA S, JOHAL G, SCHULZ B, DILKES B P.encodes a maize ortholog of thebrassinosteroid biosynthesis protein, identifying developmental interactions between brassinosteroids and gibberellins., 2016, 171: 2633-2647.
[56] Habben J E, Bao X, Bate N J, DeBruin J L, Dolan D, Hasegawa D, Helentjaris T G, Lafitte R H, Lovan N, Mo H, Reimann K, Schussler J R. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions., 2014, 12: 685-693.
[57] Shi J, Habben J E, Archibald R L, Drummond B J, Chamberlin M A, Williams R W, Lafitte H R, Weers B P. Overexpression ofgenes modifies plant sensitivity to ethylene, leading to improved drought tolerance in bothand maize., 2015, 169(1): 266-282.
[58] Scanlon M J, Takacs E M. Kernel biology//BENNETZEN J, HAKE S, eds.,. New York: Springer press, 2009: 121-143.
[59] LI X J, ZHANG Y F, HOU M, SUN F, SHEN Y, XIU Z H, WANG X, CHEN Z L, SUN S S, SMALL I, TAN B C.encodes a pentatricopeptide repeat protein required for mitochondrialtranscript editing and seed development in maize () and rice ()., 2014, 79(5): 797-809.
[60] YANG Y Z, DING S, WANG Y, LI C L, SHEN Y, MEELEY R.encodes a glutaminase in vitamin B6 biosynthesis essential for maize seed development., 2017, 174(2): 1127-1138.
[61] NEUFFER M G, SHERIDAN W F. Defective kernel mutants of maize: I. genetic and lethality studies., 1980, 95(4): 929-944.
[62] SCANLON M J, STINARD P S, JAMES M G, MYERS A M, ROBERTSON D S. Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks., 1994, 136(1): 281-294.
[63] FU S, MEELEY R, SCANLON M J.encodes a negative regulator of the heat shock response and is required for maize embryogenesis., 2002, 14(12): 3119-3132.
[64] HECKEL T, WERNER K, SHERIDAN W F, DUMAS C, ROGOWSKY P M. Novel phenotypes and developmental arrest in early embryo specific mutants of maize., 1999, 210(1): 1-8.
[65] SHEN Y, LI C, MCCARTY D R, MEELEY R, TAN B C.encodes the plastid initiation factor 3 and is essential for embryogenesis in maize., 2013, 74(5): 792-804.
[66] QI W, YANG Y, FENG X, ZHANG M, SONG R. Mitochondrial function and maize kernel development requires, a pentatricopeptide repeat protein involved inmRNA splicing., 2017, 205(1): 239-249.
[67] CHEN X, FENG F, QI W, XU L, YAO D, WANG Q, SONG R.encodes a PPR protein that affects cis-splicing of mitochondrialintron 1 and seed development in maize., 2017, 10(3): 427-441.
[68] DAI D, LUAN S, CHEN X, WANG Q, FENG Y, ZHU C, QI W, SONG R. Maizeencodes a p-type PPR protein that affects cis-splicing of mitochondrialintron 1 and seed development., 2018, 208(3): 1069-1082.
[69] QI W, TIAN Z, LU L, CHEN X, CHEN X, ZHANG W, SONG R. Editing of mitochondrial transcriptsand cox2 byis essential for mitochondrial function and maize plant development., 2017, 205(4): 1489-1501.
[70] WANG G, ZHONG M, SHUAI B, SONG J, ZHANG J, HAN L, LING H, TANG Y, WANG G, SONG R. E+ subgroup PPR proteinis required for multiple mitochondrial transcripts editing and seed development in maize and., 2017, 214(4): 1563-1578.
[71] LI X, GU W, SUN S, CHEN Z, CHEN J, SONG W, ZHAO H, LAI J.encodes a PPR protein required for seed development in maize., 2018, 60(1): 45-64.
[72] SUN F, ZHANG X, SHEN Y, WANG H, LIU R, WANG X, GAO D, YANG Y Z, LIU Y, TAN B C. The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize., 2018, 95: 919-932.
[73] CAI M, LI S, SUN F, SUN Q, ZHAO H, REN X, ZHAO Y, TAN B C, ZHANG Z, QIU F.encodes a mitochondrial PPR protein that affects the cis-splicing ofintron 1 and seed development in maize., 2017, 91(1): 132-144.
[74] REN X, PAN Z, ZHAO H, ZHAO J, CAI M, LI J, ZHANG Z, QIU F. EMPTY PERICARP11 serves as a factor for splicing of mitochondrialintron and is required to ensure proper seed development in maize., 2017, 68(16): 4571-4581.
[75] SUN F, XIU Z, JIANG R, LIU Y, ZHANG X, YANG Y Z, LI X, ZHANG X, WANG Y, TAN B C. The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of threeintrons and seed development in maize., 2019, 70(3): 963-972.
[76] XIU Z, SUN F, SHEN Y, ZHANG X, JIANG R, BONNARD G, ZHANG J, TAN B C. EMPTY PERICARP16 is required for mitochondrialintron 4 cis-splicing, complex I assembly and seed development in maize., 2016, 85(4): 507-519.
[77] LIU Y J, XIU Z H, MEELEY R, TAN B C.encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize., 2013, 25(3): 868-883.
[78] SUN F, WANG X, BONNARD G, SHEN Y, XIU Z, LI X, GAO D, ZHANG Z, TAN B C.encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize., 2015, 84(2): 283-295.
[79] YANG Y Z, DING S, WANG H C, SUN F, HUANG W L, SONG S, XU C, TAN B C. The pentatricopeptide repeat protein EMP9 is required for mitochondrialandtranscript editing, mitochondrial complex biogenesis and seed development in maize., 2017, 214(2): 782-795.
[80] LI X L, HUANG W L, YANG H H, JIANG R C, SUN F, WANG H C, ZHAO J, XU C H, TAN B C. EMP18 functions in mitochondrialandtranscript editing and is essential to seed development in maize., 2019, 221(2): 896-907.
[81] GUTIERREZ-MARCOS J F, DAL PRA M, GIULINI A, COSTA L M, GAVAZZI G, CORDELIER S, SELLAM O, TATOUT C, PAUL W, PEREZ P, DICKINSON H G, CONSONNI G.encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize., 2007, 19(1): 196-210.
[82] OFFLER C E, MCCURDY D W, PATRICK J W, TALBOT M J. Transfer cells: cells specialized for a special purpose., 2003, 54: 431-454.
[83] BRYANT N, LLOYD J, SWEENEY C, MYOUGA F, MEINKE D. Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in., 2011, 155(4): 1678-1689.
[84] SOSSO D, CANUT M, GENDROT G, DEDIEU A, CHAMBRIER P, BARKAN A, CONSONNI G, ROGOWSKY P M.encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development., 2012, 63(16): 5843-6857.
[85] LI C, SHEN Y, MEELEY R, MCCARTY D R, TAN B C.encodes a plastid-targeted cGTPase essential for embryogenesis in maize., 2015, 84(4): 785-799.
[86] ZHANG Y F, HOU M M, TAN B C. The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize., 2013, 8(6): e67369.
[87] MA Z, DOONER H K. A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize., 2004, 37(1): 92-103.
[88] LI Q, WANG J, YE J, ZHENG X, XIANG X, LI C, FU M, WANG Q, ZHANG Z, WU Y. The maize imprinted geneencodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA Polymerase III., 2017, 29(10): 2661-2675.
[89] LI J, FU J, CHEN Y, FAN K, HE C, ZHANG Z, LI L, LIU Y, ZHENG J, REN D, WANG G. The U6plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA., 2017, 10(3): 470-482.
[90] ZUO Y, FENG F, QI W, SONG R.encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development., 2019, 61(6): 728-748,
[91] WANG H, WANG K, DU Q, WANG Y, FU Z, GUO Z, KANG D, LI W X, TANG J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing., 2018, 218(3): 1233-1246.
[92] HE Y, WANG J, QI W, SONG R. Maizeencodes the Cohesin- Loading Complex Subunit SCC4 and is essential for chromosome aegregation and kernel development., 2019, 31(2): 465-485.
Molecular Basis of Kernel Development and Kernel Number in Maize (L.)
ZHAO Ran, CAI Manjun, DU Yanfang, ZHANG Zuxin
(National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070)
Grain yield per ear of maize (L.) is composed of both kernel number and grain weight. The number of kernels on an ear is determined by not only the number of kernel rows which is closely related to the inflorescence development, but also the number of fertile florets generated by the flower meristem. Therefore, those genes for inflorescence architecture and flower development are potentially involved in the genetic control of kernel number. Maize kernel is a single-seeded fruit comprised of the maternally derived pericarp, and embryo and endosperm derived from double fertilization. Both embryo and endosperm account for the vast majority of the mature kernel mass, and directly determine the kernel size and weight. In this paper, we outlined the genetic controls of kernel number with the emphasis on the inflorescence and floret related genes that are involved in the CLAVATA- WUSCHEL (CLV-WUS) feedback loop, hormone biosynthesis and signaling, floral organ development and sex determination. In particular, we described the regulatory network models for interplays among phytohormones including auxin, gibberellin, cytokinin and strigolactone in the inflorescence architecture and floral organ development. We also summarized those embryo and endosperm developmental genes involving in processing and editing of mitochondrial transcripts, transcription and translation of some chloroplast DNAs as well as nuclear RNAs. Most of these genes encode PPR proteins targeted to mitochondria or plastids. Recently, several studies have identified a new pathway to control kernel development by regulating the transcription and processing of pre-mRNA within the nucleus. Here, we also discussed the association between these genes and kernel number or kernel weight, and the potential areas of research for deciphering molecular mechanisms of grain yield in maize.
L.; kernel number per ear; kernel weight; inflorescence; floret; embryo; endosperm
10.3864/j.issn.0578-1752.2019.20.001

2019-04-17;
2019-06-20
國家自然科學基金(31871628)
趙然,e-mail:zhaoran@webmail.hzau.edu.cn。
張祖新,e-mail:zuxinzhang@mail.hzau.edu.cn
(責任編輯 李莉)