999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Selection of right-circular-polarized harmonics from p orbital of neon atom by two-color bicircular laser fields?

2019-11-06 00:44:10ChangLongXia夏昌龍YueYueLan蘭悅躍QianQianLi李倩倩andXiangYangMiao苗向陽
Chinese Physics B 2019年10期

Chang-Long Xia(夏昌龍), Yue-Yue Lan(蘭悅躍), Qian-Qian Li(李倩倩), and Xiang-Yang Miao(苗向陽),?

1College of Physics and Information Engineering,Shanxi Normal University,Linfen 041004,China

2Key Laboratory of Spectral Measurement and Analysis of Shanxi Province,Shanxi Normal University,Linfen 041004,China

Keywords:high-order harmonic generation,circular polarization field,polarization selection

1.Introduction

High-order harmonic generation(HHG)which is a useful tool to monitor quantum dynamics has been intensively investigated.[1–7]HHG could be used to produce attosecond pulse[8–12]that is a powerful tool to probe,track,control the dynamics of electron in ultrafast process.[13–16]Recently,linearly polarized attosecond pulse could be obtained from linear polarized harmonics in experiments,[17,18]and the HHG process is well described by semiclassical three-step model.[13]In circular or highly elliptical field,the atoms or molecules have a probability to be ionized but the electron scarcely ever recombines to the parent ion,thus circular-polarized harmonic(CPH)is hardly obtained by using a circular driver fields.[19,20]However,a CPH signal is needed to well understand the chiralsensitive phenomena such as ultrafast chiral-specific dynamics in molecules,the character of magnetic materials and nanostructures,and so on.[21–23]So that the CPH generation[24–27]and its potential application[28]are a hot topic in very recent years.

Counter rotating bicircular(CRB)field scheme has been proposed to generate CPH or highly elliptical light pulses.Generally,this scheme combines a right-circular-polarized(RCP)pulse with a left-circular-polarized(LCP)second harmonics,first proposed in Ref.[29].This scheme was proven experimentally[30]and it has been applied to generate an attosecond pulse recently.[31,32]For the combination field,a trefoil structure would be obtained in Lissajous curve with a threefold symmetry:the system remains constant by the combination of 120?rotation and a time delay of one-third of the fundamental frequency field period.[33]For centrally symmetric system such as atom targets,the harmonic orders of 3n+1 and 3n+2,which correspond to RCP and LCP harmonics respectively can be generated.The harmonic orders of 3n are absent because of the symmetry.[24,31,32,34–36]For the molecule targets,odd–even harmonics can also be emitted due to the asymmetry of the initial-state electron wave function,[37,38]hence the selection rules are more elaborate because it based on both the symmetry of the target and the symmetry of the field.[39–42]A linearly attosecond pulse can be obtained when the intensities of RCP and LCP harmonics are equal. Consequently,it would be meaningful if the high elliptically or circularly attosecond pulse can be obtained which means the ellipticity of the attosecond pulse can be controlled.

CPH generation is investigated from rare gas,such as helium,neon,argon,both in experiments and in theory.As we all know,the ground state of those gases is p orbital except helium and has three degenerate orbitals sign as p+(m=1),p?(m=?1),p0(m=0).In this paper,the HHG from the p orbital of neon atom by the CRB field is theoretically investigated. Since the Ne atoms with closed electron shells,a hydrogen-like model to simulate Ne atoms can also satisfy the selection rules as the p orbital:[43]Nω=(3n±1)ω(n is an integer). But it cannot simulate the intensity regularities between adjacent harmonics well.[24,43]Our work intends to focus on the selection of the same helicity,thus choosing the p orbital as the initial state is necessary.The helicity of HHG is studied by calculating the phase differences between x and y components.The right-circular-polarized harmonics could be selected in the p orbital of the neon atom by adjust the relative intensity of the pulses.Time–frequency analysis and the semiclassical three-step model are used to study the short and long paths.

2.Theory and method

We numerically calculate the HHG by solving the timedependent Schr?dinger equation(TDSE).The TDSE can be expressed as(in atomic units)

V(x,y)is the two-dimensional potential and for the neon atom can be written as[23,44]

where a=2.882 to simulate the 2p orbital of the neon atom.The combination field of CRB scheme is

where ω1field is the RCP and ω2is the LCP.γ is the electric field ratio of LCP pulse to RCP pulse. f(t)is the laser envelope with a flat top and two ramps described by the sin2function:

where T=2π/ω1.This type of envelope has been proved to get more perfect circular polarization of high-order harmonics than others.[6]From Ehrenfest theorem,the dipole accelerations in two components are given by

The power of the harmonic spectra in two components are proportional to

And the total power is obtained by

The relative harmonic phase differences between the polarized components of the emitted harmonics can be obtained as

If Sx(ω)=Sy(ω)and δ(ω)=±π/2,the harmonic is strictly circular-polarized.

3.Results and discussion

To simulate the HHG from 2p orbital of neon,we numerically solve Eq.(1)with the initial state in two cases by the method used in Ref.[24].The initial states for m=±1 are defined as p±=px±ipy,the p0orbital is neglected because it has a node in the polarization plane and the contribution to the HHG is too weak from the p0orbital.[40]In our simulation,the CRB field is combined by a λ1=1600-nm RCP pulse with λ2=800-nm LCP pulse,and the intensity of each field is I1=I2=0.5×1014W/cm2.First,we investigate HHG for the initial state in p+orbital,as shown in the left column of Fig.1.To clearly show the harmonic orders in the plateau area,figure 1(a)shows the harmonic spectra from 30th order to 90th order.The overall character of the HHG is shown in the inset of Fig.1(a).The following characters are obviously observed from harmonic spectra:(i)The harmonic orders of 3n+1 and 3n+2 are obtained in the whole plateau area and the intensities of 3n+2 orders are lower than the 3n+1 orders.(ii)The intensity of the spectrum in x component is approximately equal to the intensity in y component at each 3n+1 order.We also calculate the phase difference of the HHG by Eq.(10),and the result is shown in Fig.1(c),the orders of 3n+1 and 3n+2 are marked by the red solid circle and the blue solid square,respectively.The phase differences are stable near π/2 for harmonic orders of 3n+1 while fluctuant near the ?π/2 for the orders of 3n+2.Because the harmonic intensities are equal at the x and y components and the phase differences are nearly π/2,the harmonic orders of 3n+1 correspond to perfect RCP harmonic.

Second,we investigate HHG for the initial state in p?orbital,as shown in the right column of Fig.1.Contrary to the situation of p+:(I)The intensities of 3n+2 orders are higher than the 3n+1 orders.(II)The harmonic intensities between the x and y components are almost equal at each 3n+2 order.(III)The phase differences are stable near ?π/2 for harmonic orders of 3n+2 while fluctuant near the π/2 for the orders of 3n+1.Based on the above phenomenon and analyses,perfect LCP harmonic could be obtained at the orders of 3n+2 in p?orbitals.From Figs.1(b)and 1(d),the phase differences are not stable for the 3n+2 or 3n+1 orders,thus left-handed or right-handed elliptically polarized harmonics can be obtained in p+,p?orbitals.However,the real initial state of neon atom is coupled by p+and p?orbitals,it is necessary to calculate the total harmonic spectrum to simulate the phenomenon in the experiment.

Fig.1.Harmonic spectra from the initial state p+(left column)and p?(right column)states.The red solid line and the blue dashed line represent the x component and the y component,respectively.(a)and(c)30th–90th orders.The insets show the overlook of the whole harmonic spectra structure.(b)and(d)The phase differences between x and y components.The red solid circles and the blue solid squares represent 3n+1 and 3n+2 orders,respectively.The parameters of the two laser pulses are λ1=2λ2=1600 nm and I1=I2=0.5×1014 W/cm2.

Fig.2.The total spectra obtained by adding the contributions from the p+orbital and p?orbital coherently.(a)30th–78th orders,(b)78th–126th orders.(c)The phase differences between x and y components.The red circles and the blue squares represent 3n+1 and 3n+2 orders,respectively.The laser parameters are the same as those in Fig.1.

The total spectra of HHG are calculated by Eqs.(7)–(9),and the total dipole acceleration in x(y)component is obtained by(i is x or y).Figures 2(a)and 2(b)show the total HHG,the orders of 3n+1 and 3n+2 appear in the whole plateau region.The intensities of 3n+1 orders are higher than 3n+2 orders,the electron in continuum state is affected more strongly by the lower-frequency field,thus the polarization of the harmonics is affected more strongly by the fundamental field,that is the RCP.From Fig.2(c),the phase differences in the plateau region are stable at π/2 and ?π/2 for the harmonic orders of 3n+1 and 3n+2,i.e.,a pair of perfect circular-polarized harmonics with RCP and LCP are obtained,respectively. As mentioned in Ref.[19],linearly attosecond pulses will be synthesized if RCP and LCP harmonics have the same intensities. Therefore,while keeping RCP and LCP harmonics in perfect circular-polarization,RCP or LCP could be selected and a simple and straightforward method to generate highly elliptically or circularly attosecond pulse trains is desirable.

The mechanism of HHG is further discussed by the timefrequency analysis in synchro squeezing transforms(SST)method.The SST can solve the problem of spectrum ambiguity and analyze lower orders harmonic more clearly.[45,46]Figure 3(a)shows the time–frequency analysis by transforming the total dipole acceleration in x component.Three quantum paths are obtained in each optical cycle.The HHG is mainly contributed by short paths which are marked by Ax,Bx,and Cxin the optical cycle of[2.8T1,3.8T1].The intensity of Axis stronger than those of Bxand Cxin the above-threshold region(above 28th order).In the below-threshold region,the intensities of the three peaks are weak,corresponding to the weak spectra in this region as shown in the inset of Fig.1.For the case of y component,the time–frequency analysis is shown in Fig.3(b).There are also three quantum paths in each optical cycle.However,the intensity of Ayis very weak and the intensity of Byis stronger than the peak of Cyin the region of above threshold.Why are the intensities of three peaks different on x component and y component?We will discuss the reason by the semiclassical three-step model.

Fig.3. The SST time–frequency analysis by transforming the total dipole acceleration in two components. Panels(a)and(b)show the x and y components,respectively.The laser parameters are taken to be the same as those in Fig.2.

As everyone knows,the field is threefold symmetry in one cycle for the case of ω2=2ω1.The combined CRB field is shown in Fig.4(a),the inset is Lissajous curves of the combination field in plateau region of the trapezoidal envelope,the lobes A,B,C are marked with background colors of gray,red,and green in one-cycle electric field of the pulse.The threefold symmetry leads to the three paths[35,47]as discussed in Fig.3.To give a clear picture of the HHG,we solve the Newton’s equation under the CRB field.[48–50]The initial velocity in x component(i.e.,OA direction)is set to zero but the initial velocity in y component is nonzero when the ionization time is in lobe A,as discussed in Ref.[44].For the case of ionization time in lobe B or lobe C,we set the initial velocity to zero at the OB or OC direction,and set to non-zero at the direction perpendicular to OB or OC,the similar results can be obtained due to the symmetry of the threefold.Figure 4(b)shows kinetic energy in unit ofω1,two kinetic energy peaks which ionized in lobe C are marked with Pi1andand the corresponding emission times in lobe A and lobe B are marked with Pe1andrespectively.Although short and long paths are obtained from classical model,HHG is mainly contributed by short path in fact,[35,44]and this character can also be found from Fig.3. The intensities of HHG contributed from long path may lower due to the wave function diffusion in the laser field.So in order to understand characteristics of HHG more clearly,short path is mainly studied. Moreover,the time of electron oscillation is longer for the peakthan Pe1,thus the electron mainly recombines to the parent nucleus in peak Pe1for the case ionized from lobe C.Similarly,for the ionization time in the region of lobe A or lobe B,HHG are mainly contributed by the peaks Pe2and Pe3.Those three peaks are corresponding to the quantum paths Ax(y),Bx(y),and Cx(y),respectively.

Fig.4.(a)The combined laser field with an envelope shape.The solid black line,blue dotted line,and cyan dashed line represent the x,y components and the envelope shape.The colors of background are painted in gray,red,and green,corresponding to lobes A,B,and C as shown in Lissajous curve of the inset.(b)The kinetic energy obtained from semiclassical three-step model.Black,gray,and light gray triangles represent the ionization times at lobes C,A,and B,the corresponding emission times are represented by red,magenta,and pink circles,respectively.

The emission time of short quantum path is analyzed to explain the relative intensity of the quantum paths.In the time range of peak Pe1,|Ex|>|Ey|,which is corresponding to time range marked by gray background in Fig.4(a). So that the electron recombines to the parent nucleus in x component is stronger,this maybe the reason the intensity of quantum path Axis much larger than that of the path Ay.The phenomenon could also be verified for the paths Bx(y)and Cx(y).In the time range of peaks Pe2and Pe3,the electric field strength in x component is weaker than that in y component,thus the intensities of Bxand Cxare weaker than those of Byand Cy.The semiclassical three-step model gives a clear physical picture,which qualitatively explains physical process and relative intensity of the quantum paths.

In order to select right-circular-polarized harmonics,we keep the total intensities of RCP and LCP pulses unchanged and try to adjust the intensity ratio I2/I1by changing the amplitude ratio γ. Figure 5(a)shows harmonic spectra when γ=0.8,compared with Fig.2(a),we find that the intensities of harmonics are slightly decreased in the whole plateau region,and the intensities of 3n+2 orders get weaker.To clearly analyze the relation of the intesity,we define a quantitative parameter χ to show relative intensity between 3n+1 and 3n+2 orders of the harmonic:

where S(i)is the intensity of the i-th order,i=3n+1 or 3n+2.From Fig.5(c),contrasting the γ=1 and γ=0.8 for the p orbital,we note that the relative intensity χ is greater than 0.64,which means the intensities of 3n+1 orders are stronger than those of 3n+2 orders in both cases.The relative intensity for the case of γ=0.8 is higher than γ=1 obviously.Even the value of χ is close to 1 when n=11,13,indicating that the 3n+2 orders harmonics are almost suppressed.We also try other values of γ(not shown here)and find the harmonics of the same helicility as the fundamental field could be selected by changing the intensity ratio,but the intensities of the overall harmonic will decrease as the intensity ratio decreases.

Fig.5. (a)and(b)Harmonic spectra generated from p orbital and s orbital for the case of γ=0.8.(c)The relative intensity for p and s orbitals.The black solid square,red solid triangle,and pink hollow square represent γ=1,γ=0.8,and γ=0.5 for p orbital,respectively.The blue circle represents γ=0.8 for s orbital.The other laser parameters are keeping the same as those in Fig.2.

Could the intensity ratio affect the harmonic generation from hydrogen-like model of the neon atom in three fold electric field?The hydrogen-like model whose potential is taken fromis used to simulate the neon atom.The harmonic spectra of the neon atom with s orbital as the initial state under the same laser pulses irradiation is shown in Fig.5(b).The intensities of 3n+1 orders harmonics are a little stronger than those of 3n+2 orders for the case of γ=0.8,and they are decreased in pair after 70th order.As shown in Fig.5(c),the relative intensity χ(n)of harmonics is less than 0.54. By analyzing s orbital,the right-circularpolarized harmonics can also be selected by changing the intensity ratio,while the effect of enhancing is really weak.From the above discussion,we can achieve the selection of right-circular-polarized harmonics by laser field action on the p orbital of the neon atom with increasing the intensities of RCP pulse. We atrribute the selection of the right-circularpolarized harmonics to the stronger effect of the fundamental field,which leads to probability of recombination on p+.So when the intensities of RCP pulse are increased,the intensities of harmonic whose helicity direction is the same as RCP pulse could be enhanced.

4.Conclusion

In summary,we theoretically investigated HHG from a 2p orbital neon atom in intense CRB field.A pair of circularpolarized harmonics with RCP and LCP are obtained at the orders of 3n+1 and 3n+2,which is corresponding to the results in experiments. Time–frequency analysis shows that three short quantum paths Ax(y),B(x(y)),and C(x(y))contributing to HHG in each optical cycle,and their intensities are different between x component and y component. The classical three-step model is used to reconstruct the three quantum paths and explain the reason why the intensities are different.It is found that the right-circular-polarized harmonics can be selected in the p orbital of the neon atom by changing the intensity ratio.Our research establishes a good correspondence between the quantum path and the classical trajectory,which provides a valuable scheme on generating highly elliptically or circularly attosecond pulse trains.

主站蜘蛛池模板: 一级福利视频| 香蕉国产精品视频| 中文字幕丝袜一区二区| 天堂va亚洲va欧美va国产| 亚洲男人的天堂网| 国产小视频免费观看| 国产一级片网址| 国产九九精品视频| 成人蜜桃网| www.亚洲一区| 国产一区二区三区精品欧美日韩| 亚洲美女一级毛片| 啪啪永久免费av| 国产福利一区在线| 国产99视频精品免费观看9e| 中文字幕欧美成人免费| 国产91无码福利在线 | 一本色道久久88亚洲综合| 视频一本大道香蕉久在线播放| 免费观看成人久久网免费观看| 美女潮喷出白浆在线观看视频| 久久精品嫩草研究院| 18禁黄无遮挡免费动漫网站| 波多野结衣国产精品| 久久香蕉国产线看观| 五月天福利视频| 亚洲成人高清在线观看| 亚洲国产av无码综合原创国产| 国产91线观看| 国产v精品成人免费视频71pao| 黄色在线不卡| 国产成人免费| 国产成人综合亚洲欧洲色就色| 亚洲自偷自拍另类小说| 国产在线视频福利资源站| 强奷白丝美女在线观看| av一区二区三区高清久久| 97一区二区在线播放| 国产女人在线视频| 欧美成一级| 人妻丰满熟妇AV无码区| 动漫精品中文字幕无码| 熟妇丰满人妻| 伊人丁香五月天久久综合| 为你提供最新久久精品久久综合| 这里只有精品在线播放| 天堂久久久久久中文字幕| 国产一区二区丝袜高跟鞋| 成色7777精品在线| 爱爱影院18禁免费| 色综合久久无码网| 亚洲黄网视频| 久久这里只有精品8| hezyo加勒比一区二区三区| 日本欧美视频在线观看| 波多野结衣中文字幕一区| 丁香六月激情综合| 欧美成人午夜在线全部免费| 亚洲国产91人成在线| 国产日韩精品欧美一区喷| 国产亚洲美日韩AV中文字幕无码成人| 99视频只有精品| 55夜色66夜色国产精品视频| 亚洲精品高清视频| 九九视频免费看| 黄色网址免费在线| 国产高潮流白浆视频| 大香伊人久久| 精品国产一区二区三区在线观看| 亚洲成人高清无码| 精品少妇人妻无码久久| 午夜国产小视频| 伊在人亞洲香蕉精品區| 久久精品欧美一区二区| 免费国产无遮挡又黄又爽| 国产精品亚洲精品爽爽| 青青草国产免费国产| 久久国产精品嫖妓| 人妻无码一区二区视频| 日本一区中文字幕最新在线| 91色在线观看| 国产香蕉在线|