王倩
摘 要 腫瘤免疫療法是腫瘤治療領域的新突破,其中,免疫檢查點抑制劑在當今腫瘤免疫療法中備受矚目。目前已有抗體類藥物上市,可治療多種類型癌癥且療效顯著,與之相關的小分子類抑制劑也成為研發熱點。本文就近年來公開的PD-1/PD-L1信號通路的小分子抑制劑專利的最新進展進行綜述。
關鍵詞 PD-1/PD-L1 小分子抑制劑 專利
中圖分類號:R979.19 文獻標志碼:A 文章編號:1006-1533(2019)17-0076-05
The research progress of the patent for PD-1/PD-L1 small molecular inhibitor
WANG Qian*
(Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201203, China)
ABSTRACT Tumor immunotherapy is a new breakthrough in the field of cancer treatment, in which the immunological checkpoint inhibitor PD-1/PD-L1 has attracted much attention in todays tumor immunotherapy. Currently, several anti-PD-1 and anti-PD-L1 antibodies have been launched, which can treat many types of tumors with remarkable clinical curative effect, and the related small molecule inhibiters have been becoming research hotspots. The progress in patents published in recent years for small molecule inhibitors which can inhibit the PD-1/PD-L1 signaling pathway is reviewed.
KEy WORDS PD-1/PD-L1; small molecular inhibitors; patent
腫瘤免疫療法正在改變著癌癥治療的方式,直接針對于程序死亡受體1(PD-1)及其配體(PD-L1)的免疫檢查點抑制劑對于多種類型的癌癥均顯示出良好的臨床療效,甚至被認為是當今最有前景的腫瘤免疫療法[1]。目前,多個PD-1/PD-L1抗體類藥物已相繼上市并取得巨大成功。然而,抗體藥物也有其自身缺陷,如生產成本高及免疫原性等問題,加之此類藥物半衰期較長,一旦注射到體內,副作用就很難緩解。與抗體藥物相比,小分子藥物有其不可取代的優勢,比如口服生物利用度高、在腫瘤微環境中更大的暴露量或跨越生理障礙如血腦屏障等。另外,由于小分子藥物半衰期較短,通常不超過24 h,它可通過口服給藥的方式維持藥效,因此治療方式更靈活,研究者或臨床醫生可間歇性給藥以平衡副作用的風險[2]。因此,開發PD-1/PD-L1小分子藥物逐漸成為熱點,本文就這一領域專利報道的最新研究進展進行簡要綜述。
PD-1/PD-L1小分子抑制劑的研究落后于抗體,繼抗體藥物成功上市后,此類小分子抑制劑的研發才備受關注,但大多數都處于發現研究階段,還沒有相應的藥物上市,進展最快的正處于臨床一期。
1 磺胺間甲氧嘧啶和磺胺甲噻二唑類
早在2011年,哈佛大學的Sharpe等[3]就發現一系列磺胺類化合物可調節PD-1/PD-L1的信號通路,選擇性抑制PD-1,代表化合物為磺胺間甲氧嘧啶(sulfamonomethoxine,圖1,化合物1)和磺胺甲噻二唑(sulfamethizole,圖1,化合物2),以期用于治療與PD-1/PD-L1通路相關的疾病,如自身免疫性疾病、炎癥性疾病、過敏、移植排斥、癌癥、免疫缺陷等其他與免疫相關的疾病。



百時美-施貴寶公司對大環多肽類化合物也進行了研究,這類化合物同樣可有效抑制PD-1與PD-L1的結合作用,代表化合物活性高達納摩級[23]。試驗結果表明該類化合物與PD-L1結合能夠增加先前暴露于持久性抗原所產生的記憶T細胞群中IFNγ的釋放。類似于抗PD-L1抗體,該類化合物與PD-L1結合時能夠增強對抗持續慢性病毒感染的T細胞群中IFNγ的釋放。最早的專利公開于2014年,IC50與PD-L1的胞內結合試驗結果顯示,在Juekat、小鼠B細胞系(LK35.2)及人肺腺癌細胞系(L2987)上,該類化合物可結合PD-L1,且與抗PD-L1單抗的結合位點相同。同時,試驗結果表明,該類化合物可與PD-L1結合,化合物46(圖10)的 IC50為1 nmol/L。該類化合物可選擇性的干擾PD-L1與PD-1及CD80的結合從而自身和PD-L1結合,但是并不能阻斷PD-1/PD-L2或者CD80/CTLA4的相互作用。并且,該類化合物還可阻礙重組PD-1-Ig與Jurkat-PD-1細胞的結合,也能阻礙重組PD-1-Ig與具有內源性PD-L1表達的腺癌細胞系L2987或者hPD-L1過表達的小鼠B細胞系LK35.2-hPD-L1的結合[23]。
綜上所述,抑制PD-1/PD-L1信號通路,可有效激活T細胞,用于多種類型疾病的治療,隨著這一靶點相關抗體類藥物取得成功,小分子也蓬勃發展起來,國際國內多家公司在研且成果顯著,多篇專利相繼公開,無論是分子量介于單克隆抗體與傳統小分子之間的多肽類化合物,還是傳統的小分子化合物都展現出了良好的PD-1/PD-L1信號通路抑制活性,它們或是與PD-1 結合,或是使PD-1聚合,形成二聚物,都可有效阻止PD-1與PD-L1的結合,從而抑制其相互作用,治療與此通路相關的多種疾病。雖然目前多數化合物仍處在發現研究階段,我們期待隨著研究的日益深入和透徹,在不久的將來會有方便易得的PD-1/PD-L1小分子藥物上市。
參考文獻
[1] Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors[J]. Int Immunopharmacol, 2018, 62: 29-39.
[2] Huck BR, K?tzner L, Urbahns K. Small molecules drive big improvements in immuno-oncology therapies[J]. Angew Chem Int Ed Engl, 2018, 57(16): 4412-4428.
[3] Sharpe AH, Butte MJ, Oyama S. Modulators of immunoinhibitory receptor pd- 1, and methods of use thereof: WO2011082400[P]. 2011-07-07.
[4] Chupak LS, Zheng X. Compounds useful as immunomodulators: WO2015034820[P]. 2015-03-12.
[5] Abdel-Magid AF. Inhibitors of the PD-1/PD-L1 pathway can mobilize the immune system: an innovative potential therapy for cancer and chronic infections[J]. ACS Med Chem Lett, 2015, 6(5): 489-490.
[6] Chupak LS, Ding M, Martin SW, et al. Compounds useful as immunomodulators: WO2015160641[P]. 2015-10-22.
[7] Yeung KS, Grant-Young KA, Zhu J, et al. 1, 3-Dihydroxyphenyl derivatives useful as immunomodulators: WO2018009505[P]. 2018-01-11.
[8] Yeung KS, Grant-Young KA, Zhu J, et al. Biaryl compounds useful as immunomodulators: WO2018044963[P]. 2018-03-08.
[9] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,2,4-Oxadiazole derivatives as immunomodulators: WO2015033299[P]. 2015-03-12.
[10] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,3,4-Oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators: WO2015033301[P]. 2015-03-12.
[11] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,2,4-Oxadiazole and thiadiazole compounds as immunomodulators: WO2016142833[P]. 2016-09-15.
[12] 馮志強, 陳曉光, 楊陽, 等. 芐苯醚類衍生物、及其制法和藥物組合物與用途: WO2017202273[P]. 2017-11-30.
[13] 馮志強, 陳曉光, 楊陽, 等. 煙醇醚類衍生物、及其制法和藥物組合物與用途: WO2017/202274[P]. 2017-11-30.
[14] 馮志強, 陳曉光, 張莉婧, 等. 溴代芐醚衍生物、及其制法和藥物組合物與用途: WO2017202275[P]. 2017-11-30.
[15] 馮志強, 陳曉光, 楊陽, 等. 苯醚類衍生物、及其制法和藥物組合物與用途: WO2017202276[P]. 2017-11-30.
[16] Liu PC, Volgina A, Wynn R, et al. Tetrahydro imidazo[4,5-C] pyridine derivatives as PD-L1 internalization inducers: WO2018119224[P]. 2018-06-28.
[17] Lu L, Zhang F, Li J, et al. Heterocyclic compounds derivatives as PD-L1 internalization inducers: WO2018119263[P]. 2018-06-28.
[18] Khleif S, Mkrtichyan M, Lebedyeva I. Compositions for modulating PD-1 signal transduction: WO2018100556[P]. 2018-06-07.
[19] Sasikumar PGN, Ramachandra M, Vadlamani SK, et al. Immunosuppression modulating compounds: WO2011161699[P]. 2011-12-29.
[20] Sasikumar PGN, Ramachandra M, Vadlamani SK, et al. Therapeutic compounds for immunomodulation: WO2012168944[P]. 2012-12-13.
[21] Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. Peptidomimetic compounds as immunomodulators: WO2013132317[P]. 2013-09-12.
[22] Sasikumar PGN, Ramachandra M. Immunomodulating cyclic compounds from the BC loop of human PD1: WO2013144704[P]. 2013-10-03.
[23] Miller MM, Mapelli C, Allen MP, et al. Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions: WO2014151634[P]. 2014-09-25.