999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有變號非線性項的分數階微分方程邊值問題正解的存在性

2019-10-21 09:26:41江衛華韓晴晴楊君霞
河北科技大學學報 2019年4期

江衛華 韓晴晴 楊君霞

摘 要:為了進一步研究非線性項的分數階微分方程邊值問題的性質,討論了帶有變號非線性項的(n-1,1)分數階微分方程特征值問題正解的存在性,其中分數階導數是Riemann-Liouville型。首先利用給定邊值問題的Green函數,將微分方程轉化為等價的積分方程,然后在非線性項f(t,x)滿足Caratheodory條件(即任意選取變量x,非線性項f(t,x)為可測函數,對(0,1)區間內幾乎所有t,非線性項f(t,x)為x的連續函數)下。通過構造適當的Banach空間,運用錐拉伸與錐壓縮不動點定理和Leray-Schauder非線性抉擇得出邊值問題正解存在的充分條件。結果表明,非線性項f(t,x)中的t可以在(0,1)區間內任何點處具有奇性,同時還改變了使邊值問題的解存在的特征值λ的取值范圍。研究結果為現存結論的深入研究打下了基礎。

關鍵詞:常微分方程;不動點定理;巴拿赫空間;格林函數;正解;分數階微分方程

中圖分類號:O175.8?文獻標志碼:A

文章編號:1008-1542(2019)04-0294-07

近年來,隨著分數階微分方程在物理、化學、工程等領域的廣泛應用,越來越多的學者意識到了它的重要性[1-7],對分數階微分方程的邊值問題正解的存在性的研究成為熱點問題之一[8-24]。

3?結?論

筆者分別運用錐拉伸與錐壓縮不動點定理和Leray-Schauder非線性抉擇,在非線性項f(t,x)不是連續函數的情況下,給出了具有特征值的分數階微分方程兩點邊值問題正解存在的充分條件。使得非線性項f(t,x)中的t可以在(0,1)區間內任何點處具有奇性,同時還改變了使邊值問題的解存在的特征值λ的取值范圍。研究結果為現存結論的深入研究打下了基礎。

參考文獻/References:

[1]?鐘承奎.非線性泛函分析引論[M]. 蘭州:蘭州大學出版社,2004.

[2]?鄭祖庥.分數微分方程的發展和應用[J].徐州師范大學學報(自然科學版),2008,26(2):1-10.

ZHENG Zuxiu.On the development and applications of fractional differential equations [J]. Journal of Xuzhou Normal University(Natural Science Edition),2008,26(2):1-10.

[3]?王高雄,周之銘,朱思銘,等.常微分方程[M].北京:高等教育出版社,2006.

[4]?蘇新衛,穆曉霞.非線性分數階微分方程正解的存在性和唯一性[J].河南師范大學學報(自然科學版),2006,34(4):9-12.

SU Xinwei, MU Xiaoxia. Existence and uniqueness of positive solutions for a system of nonlinear fractional differential equations [J]. Journal of Henan Normal University (Natural Science),2006,34(4):9-12.

[5]?EIDELMAN S D, KOCHUBEI A N. Cauchy problem for fractional diffusion equations [J].Journal of Differential Equations,2004,199(2):211-255.

[6]?BAI Zhanbing,GE Weigao,WANG Yifu. The method of lower and upper solutions for some fourth-order equations[J]. Journal of Inequalities in Pure and Applied Mathematics, 2004, 5(1):124-131.

[7]?KILBAS A A, TRUJILLO J J. Differential equations of fractional order: Methods, results and problems.Ⅱ[J].Applicable Analysis, 2002, 81(2):435-493.

[8]?YUAN C. Multiple positive solutions for (n-1,1)-type semipositione conjugate boundary value problems of nonlinear fractional differential equations[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2010,36:1-12.

[9]?劉靜.幾類非線性項變號的微分方程邊值問題解的存在性[D]. 曲阜:曲阜師范大學,2012.

LIU Jing. Existence of Solutions for Boundary Value Problems of Differential Equations with Several Kinds of Nonlinear Term Variations[D]. Qufu: Qufu Normal University,2012.

[10]王亞平,劉立山,吳永洪.帶有Riemann-Stieltjes積分邊界條件的非線性奇異分數階微分方程邊值問題正解的存在性[J]. 應用數學學報,2017,40(5):752-769.

WANG Yaping, LIU Lishan, WU Yonghong. Existence of multiplicity of positive solutions for nonlinear singular fractional differential equation with Riemann-Stieltjes integral boundary conditions[J]. Acta Mathematicae Applicatae Sinica,2017,40(5):752-769.

[11]江衛華,陳靜,郭彥平.具有變號非線性項的二階三點微分方程組的邊值問題的2組正解[J].中國農業大學學報,2007,12(1):95-98.

JIANG Weihua, CHEN Jing, GUO Yanping. Two positive solutions to a second-order and three-point boundary value problem with sign changing nonlinear term[J]. Journal of China Agricultural University,2007,12(1):95-98.

[12]江衛華,張強,郭巍巍.具有變號非線性項的脈沖微分方程邊值問題的正解[J].河北科技大學學報,2013,34(1):1-6.

JIANG Weihua, ZHANG Qiang, GUO Weiwei. Positive solutions of the boundary value problem for impulsive differential equations with sign-changing nonlinearterm[J]. Journal of Hebei University of Science and Technology,2013,34(1):1-6.

[13]姚慶六.帶變號系數的非線性二階兩點邊值問題的正解[J].鄭州大學學報(理學版),2007,39(1):6-11.

YAO Qingliu. Positive solutions of a nonlinear second-order two-point boundary value problems with coefficient that changes sign[J]. Journal of Zhengzhou University (Natural Science Edition),2007,39(1):6-11.

[14]杜睿娟.共振情形下二階多點邊值問題解的存在性[J].數學的實踐與認識,2015,45(24):272-278.

DU Ruijuan. Existence of solutions for second-order multi-point boundary value problems at resonance[J]. Mathematics in Practice and Theory,2015,45(24):272-278.

[15]田元生,李小平,葛渭高. p-Laplacian分數階微分方程邊值問題正解的存在性[J].應用數學學報,2018,41(4):529-539.

TIAN Yuansheng, LI Xiaoping, GE Weigao. Existence of positive solutions to boundary value problems of fractional differential equation with p-Laplacian[J]. Acta Mathematicae Applicatae Sinica,2018,41(4):529-539.

[16]王威璇,翟成波.無窮區間上分數階微分方程m-點邊值問題的正解[J].吉林大學學報(理學版),2018,56(6):1315-1323.

WANG Weixuan, ZHAI Chengbo. Positive solutions of m-point boundary value problems for fractional differential equations on infinite intervals [J].Journal of Jilin University (Science Edition),2018,56(6):1315-1323.

[17]廖秀,韋煜明,馮春華.一類無窮區間上分數階微分方程邊值問題正解的存在性[J].吉林大學學報(理學版),2018,56(6):1299-1306.

LIAO Xiu, WEI Yuming, FENG Chunhua. Existence of positive solutions for a class of boundary value problems of fractional differential equations on infinite interval[J]. Journal of Jilin University (Science Edition),2018,56(6): 1299-1306.

[18]劉元彬,梅雪暉,胡衛敏.含p-Laplacian算子的分數階脈沖微分方程邊值問題的解[J].數學的實踐與認識,2018,48(20):202-211.

LIU Yuanbin, MEI Xuehui, HU Weimin. Solutions of boundary value problems of fractional impulsive differential equations with p-Laplacian operator[J]. Mathematics in Practice and Theory,2018,48(20):202-211.

[19]黃燕萍,韋煜明.一類分數階微分方程多點邊值問題的多解性[J].廣西師范大學學報(自然科學版),2018,36(3):41-49.

HUANG Yanping, WEI Yuming. Multiple solutions of multiple-points boundary value problem for a class of fractional differential equation[J]. Journal of Guangxi Normal University (Natural Science Edition),2018,36(3):41-49.

[20]宋姝,周碧波,張玲玲.一類Caputo分數階脈沖微分方程的反周期邊值問題[J].中北大學學報(自然科學版),2018,39(4):391-396.

SONG Shu, ZHOU Bibo, ZHANG Lingling. The anti-periodic boundary value problems for a class of impulsive differential equations of Caputo fractional order[J]. Journal of North University of China(Natural Science Edition),2018,39(4):391-396.

[21]陳會.非線性分數階微分方程邊值問題解的存在性[J].淮陰師范學院學報(自然科學版),2018,17(3):205-211.

CHEN Hui. Existence of solutions for boundary value problems with nonlinear fractional differential equations[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2018,17(3):205-211.

[22]杜煒,許和乾.一類具有p-Laplacian算子的分數階微分方程邊值問題正解的存在性[J].淮陰師范學院學報(自然科學版),2018,17(3):189-193.

DU Wei, XU Heqian. Existence of positive solutions for boundary value problem with p-Laplacian operators of fractional differential equations[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2018,17(3):189-193.

[23]JIANG Weihua, SUN Bingzhi. Existence of solutions for functional boundary value problems of second-order nonlinear differential equations system at resonance[J]. Advances in Difference Equations, 2017, 2017(1):269.

[24]CHEN Yi, TANG Xianhua. Positive solutions of fractional differential equations at resonance on the half-line[J]. Boundary Value Problems, 2012,2012: 64.

主站蜘蛛池模板: 香蕉久久国产超碰青草| 91综合色区亚洲熟妇p| 狼友av永久网站免费观看| 亚洲精品在线观看91| 无码视频国产精品一区二区| 日韩精品一区二区三区免费在线观看| 午夜福利视频一区| 亚洲国产天堂久久综合| 婷婷午夜天| 久久永久视频| 毛片免费试看| 日韩天堂在线观看| www.国产福利| 香蕉99国内自产自拍视频| 91成人试看福利体验区| 伊人成人在线视频| 国产在线97| 国产一级无码不卡视频| 日韩一区二区在线电影| 日韩欧美在线观看| 一级毛片免费观看久| a级毛片在线免费| 一级毛片免费播放视频| 亚洲人在线| 日韩精品专区免费无码aⅴ| 国产免费久久精品99re不卡| 午夜小视频在线| 天堂av综合网| 无码区日韩专区免费系列| 欧美一级高清片久久99| 四虎影视永久在线精品| AV熟女乱| 国产一区二区三区精品久久呦| 久久免费视频6| 九九九精品视频| www.99在线观看| 亚洲AV无码乱码在线观看裸奔| 亚洲成人动漫在线| 乱色熟女综合一区二区| 久久亚洲中文字幕精品一区| 精品久久香蕉国产线看观看gif| 亚洲有无码中文网| 99久久精品国产精品亚洲| 韩国自拍偷自拍亚洲精品| 青青青视频91在线 | 国产无码性爱一区二区三区| 欧美成人综合视频| 亚洲国产天堂久久九九九| 国产精品偷伦视频免费观看国产| 久草性视频| 成年人福利视频| 国产欧美自拍视频| 精品人妻系列无码专区久久| 久久亚洲日本不卡一区二区| 996免费视频国产在线播放| 就去色综合| 国产激情国语对白普通话| 无码福利日韩神码福利片| 亚洲一区二区黄色| 日韩欧美91| 国产成人亚洲精品无码电影| 中文无码毛片又爽又刺激| 免费在线看黄网址| 91偷拍一区| 国产91麻豆视频| 国产精品内射视频| 国产黄色片在线看| 国产不卡国语在线| 亚洲第一成人在线| av免费在线观看美女叉开腿| 免费一级大毛片a一观看不卡| 欧美翘臀一区二区三区| 色欲国产一区二区日韩欧美| 国产欧美日韩va| 毛片在线看网站| 久久黄色免费电影| 又黄又湿又爽的视频| 亚洲人人视频| 国模粉嫩小泬视频在线观看| 亚洲国产中文在线二区三区免| 五月六月伊人狠狠丁香网| 亚洲自偷自拍另类小说|