馮 晶,荊 勇,2,趙立欣,姚宗路,申瑞霞
生物炭強化有機廢棄物厭氧發酵技術研究
馮 晶1,荊 勇1,2,趙立欣1※,姚宗路1,申瑞霞1
(1. 農業農村部規劃設計研究院農村能源與環保研究所,農業農村部農業廢棄物能源化利用重點實驗室,北京 100125; 2. 東北林業大學工程技術學院,哈爾濱 150036)
厭氧發酵是中國有機廢棄物處理的重要技術途徑,但利用厭氧發酵技術在高負荷條件下處理有機廢棄物過程中,因有機酸、氨氮等抑制性物質作用,易導致厭氧發酵運行不穩定,處理效率不高等問題。生物炭是生物質材料在無氧或缺氧條件下經高溫熱解形成的多孔徑碳質材料,具有比表面積高,孔隙結構復雜,表面活性基團豐富和導電性強等特性,并被廣泛用于厭氧發酵技術研究。近年來國內外研究表明,生物炭能有效強化厭氧發酵,提高厭氧發酵過程中有機廢棄物的處理效率。然而,對于生物炭強化厭氧發酵技術途徑,目前仍未見系統的梳理和報道。該文對生物炭材料的化學組成、孔隙結構、表面官能團關鍵因素及生物炭強化厭氧發酵技術的重要途徑進行了系統分析和歸納,從生物炭材料的理化性質出發,闡述了生物炭對于厭氧發酵技術的強化效果及強化途徑,強化途徑主要包括:提升系統緩沖能力、微生物載體作用和強化電子傳遞等,在此基礎上提出了今后生物炭強化有機廢棄物厭氧發酵技術的重點研究內容和方向,為開發厭氧發酵強化技術提供指導。
廢棄物;發酵;生物炭;強化技術;研究進展
據統計,中國每年約產生21億t林業廢棄物和農副產物[1],約38億t畜禽糞污[2]。當前,中國仍有大量農林廢棄物沒有得到有效利用,秸稈田間無序焚燒、糞污散亂排放等問題在部分地區仍然存在。
厭氧發酵技術被認為是處理農林廢棄物的重要途徑。農林廢棄物經過厭氧發酵可用于生產清潔能源沼氣,發酵剩余的沼渣、沼液也可作肥料還田。近年來,中國在農林廢棄物資源化利用領域普遍采用濕法厭氧發酵技術,尤其是全混式厭氧發酵技術。然而,隨著中國規模化沼氣的迅速發展,農村沼氣工程轉型升級的持續推進,發現全混式厭氧發酵過程易受高濃度氨氮及揮發性脂肪酸等的抑制,存在產氣效率低、發酵不穩定等問題[3-4],這也是中國規模化沼氣工程運行效果差的重要原因。
生物炭作為一種新興炭材料,是農林廢棄物高溫熱解的產物[5],一般具有比表面積高、孔隙結構復雜、表面活性基團豐富、導電性強等特性[6-7],近年來在厭氧發酵系統中的添加、應用已經成為當前的研究熱點。眾多研究發現,生物炭的添加可有效保持厭氧發酵過程的穩定性,提高厭氧發酵產氣效率[8-10],然而,目前對添加生物炭強化厭氧發酵機理仍不清晰,該技術的工程化應用也受到一定限制。本文擬通過對當前生物炭強化厭氧發酵的眾多研究進行梳理和總結,為開展厭氧發酵過程中生物炭作用機理研究,進一步開發生物炭強化厭氧發酵技術提供一定的借鑒。
生物炭是由含碳量豐富的生物質在無氧或限氧的條件下高溫熱解而得到的一種細粒度、多孔性的碳質材料[11],一般由無定形碳、芳香族碳和灰分組成[12],其主要組成元素包括C、H、O、N及灰分中的Si、Al、Fe、Ti、P、Ca、Mg、Na、K和S等[13-14]。生物炭表層分布著各種官能團、無機及金屬離子,其中含O、N、S的官能團比較豐富[7]。生物炭中Na、K、Mg、Ca 等堿土金屬元素常以氧化物或碳酸鹽的形式存在,溶于水后呈微堿性,具有一定的酸堿緩沖特性[15]。
不同種類生物炭組分存在一定差異,如糞肥源生物炭一般含有較高的N、P元素,木材源生物炭的碳和揮發性物質含量一般高于農業廢棄物制備的生物炭[16],灰分、N、P、K、Ca、Mg等含量卻相對較低[17],且同溫條件下,一般有機質含量較高的污泥、糞便等生物炭灰分含量依次高于農業廢棄物生物炭、木材源生物炭等[14-15]。不同來源與種類的生物炭化學組成具體見表1。

表1 不同生物質原料、熱解溫度及生物炭化學成分
生物質經熱解后,組成物質受損,結構收縮形成更為致密的生物炭孔隙結構[26]。根據孔徑尺寸的不同,可分為微孔(<0.8 nm)、小孔(0.8~2 nm)、中孔(>2~50 nm)和大孔(>50 nm)。復雜多樣的孔隙結構使生物炭具有較大的孔容和比表面積,其中微孔對生物炭的比表面積貢獻最大[27]。
不同的生物質原料及熱解溫度對生物炭孔隙結構影響比較大(見表2)。如DD Sewu等[6,30-31]研究發現,相同條件下木屑生物炭的孔隙率介于稻草生物炭和韓國圓白菜生物炭之間,其比表面積卻遠小于農業廢棄物、污泥和糞便等原料熱解所得生物炭。一般生物炭的比表面積隨著溫度的升高而增大,溫度越高生物質內部揮發性物質消耗的越多,生物炭表面越粗糙,孔隙結構越復雜[17-18]。但溫度過高也會影響孔隙結構的多樣性,如炭化溫度逐漸升至700~800 ℃時,生物炭中微孔和中孔數量反而減少[20,25],其原因主要在于較高的溫度使更多的揮發性物質被消耗,造成了微孔和中孔的損失。

表2 不同生物質原料及熱解溫度下生物炭孔隙結構特征
生物炭表面分布著豐富的官能團,如De等[34]研究發現,生物炭在3 200~3 600 cm-1(O-H)伸縮振動處對應的峰值最高,在2 850~3 000 cm-1(C-H)、1 550~1 640 cm-1(酰胺)、1 350~1 480 cm-1(-C-H)、1 000~1 300 cm-1(酯)、600~800 cm-1(鹵代烷基)處也具有較強的峰。Chen等[31]發現,生物炭表面官能團波峰主要發生在3 436 cm-1(-OH)、1 591 cm-1(芳香C=O,C=C)、1 400 cm-1(C-O)和1 050 cm-1(SiO32-)處。一般生物炭表面含氧、氮、硫的官能團較豐富,大多為負電荷且電荷分布密集,有助于加強生物炭表面極性及與外界物質的陽離子交換能力[14,35]。
不同種類的生物炭表層官能團種類或數量會存在一定的差異。如韓國圓白菜(Korean cabbage)廢棄物生物炭和木屑生物炭均在C-C、O-H、C=O、C=C-C芳香環和苯基處有特征峰,而稻草秸稈生物炭在C=O(COOH)、C=C-C(芳香環)、C-O和苯基處也存在特征峰,但相對較少[28],而花生殼和松木生物炭官能團種類差異不顯著,但同種官能團的豐富度略有差異[36]。此外,生物質熱解炭化工藝,尤其是溫度對生物炭表面官能團量具有十分重要的影響。熱解過程中,生物質材料中大量的揮發性物質丟失,H、O、N等元素也存在部分丟失,導致生物炭表面的官能團部分損失[18],溫度越高損失越多。
生物炭憑借其良好的生物理化性能,對厭氧發酵起到顯著的強化作用。目前,生物炭對厭氧發酵效果的提升研究主要集中在批式試驗,而在連續式厭氧發酵試驗方面的報道較少。
從批式試驗的結果來看,生物炭對于厭氧發酵強化效果主要體現在縮短延滯期、提升最大產率以及提高累積甲烷產量等方面[37-38]。批式試驗結果表明(見表3),生物炭投加后可縮短延滯期4%~87.4%,提高最大產率1.4%~70.6%,提高累積產甲烷體積分數1.9%~71.7%。

表3 不同生物質原料生物炭產氣效果
不同生物炭種類、粒徑及添加劑量對于產氣效果的提升也存在一定差異[39]。在添加同種生物質原料的生物炭條件下,甲烷的最大產率及延滯期的縮短量與生物炭粒徑大小成負相關[40],并隨生物炭添加量在一定范圍內呈現出先上升后逐漸下降的趨勢[3,37],即粒徑越小,添加劑量越大,延滯期則越短,最大甲烷產率則越高,當添加劑量達到一定值后,隨著生物炭劑量的增加,厭氧發酵強化效果逐漸降低[39]。不同生物炭種類相比,木屑源生物炭比稻殼、秸稈源生物炭對縮短延滯期效果更加顯著,同時提高最大甲烷產率及累積甲烷產量也受木屑種類的限制,但一般比稻殼、秸稈、雞糞源等生物炭提高最大甲烷產率顯著[41-42]。生物炭的添加,縮短了厭氧發酵的延滯期,使甲烷的產量及產率得到很大的提升,此效果也被Zhao等通過連續式厭氧發酵所證明[43]。
生物炭對于厭氧發酵效果的提升作用主要是通過提升系統緩沖能力[15]、微生物載體作用[40]、強化電子傳遞等途徑[30],目前已經成為研究的熱點。
2.2.1 提升系統緩沖能力
生物炭具有豐富的孔隙,高的比表面積,同時炭表層也含有比較豐富的官能團,大量含氧、氮、硫等形式的官能團使表面具有很強的極性[44],這些性質決定了生物炭具有較強的吸附能力。一般而言,生物炭的吸附途徑主要包括靜電吸引、沉淀、表面絡合、離子交換[14]、范德瓦爾力及生物炭表面與環境中各種基團、物質形成氫鍵等[45]。如Meng等[19,34]研究發現,通常生物炭在液體環境中會溶解析出各種水溶性化合物,形成水溶性陰離子(SO42-、PO43-等)和陽離子(Ca2+、Mg2+等),使生物炭表面具有一定量電荷,進一步增強生物炭表層的靜電吸引力及與外界的離子交換能力。同時,生物炭中含有較多的堿和堿土金屬元素[18],在液體環境中呈堿性,有助于促進厭氧消化中二氧化碳向碳酸氫鹽或碳酸鹽的轉化,灰分含量越高堿度越大,提升厭氧發酵系統的緩沖能力越顯著[20,46]。
在厭氧發酵系統中添加生物炭,通過堿度的提升及對沼液中有機酸的吸附,可有效提升發酵系統的緩沖能力,保證厭氧發酵過程的穩定運行。一般生物炭對厭氧消化系統中的酸抑制具有顯著的緩解作用,生物炭中豐富的堿土金屬元素,緩解了厭氧發酵體系乙酸、丙酸、丁酸等VFAs大量生成導致的過度酸化[24],使溶液pH值下降有一定的延遲,有效縮短了滯后時間(約27.5%~64.4%),提高了甲烷最大產量(約22.4%~40.3%),這也直觀的表現了生物炭對VFAs的緩沖能力[3]。
在厭氧發酵系統中添加生物炭,通過堿度的提升及對沼液中氨氮等抑制性物質的吸附,可有效提升發酵系統的緩沖能力,保證厭氧發酵過程的穩定運行。生物炭對于氨氮的吸附能力一般在10 mg/g以上,且不同類型生物炭的吸附能力也有所差異,如木素含量越高氨氮吸附量相對越小,宋婷婷等[47]對各類生物炭氨氮吸附能力進行了評價,其中花生殼炭(16.22 mg/g)>玉米稈炭(12.64 mg/g)>竹炭(10.86 mg/g)>楊木屑炭(10.15 mg/g)。Chen等[29,48]對生物炭吸附氨氮的研究結果也表明玉米秸稈炭的吸附效果強于木炭,稻殼炭的吸附效果強于山核桃殼炭和竹炭等。
生物炭對VFAs和氨氮的吸附及抑制緩解能力受各種因素的影響,如pH值、溫度、生物炭粒徑和劑量等。針對以上因素國內外學者進行了大量試驗探索,結果表明,一定條件下隨著厭氧發酵系統中生物炭劑量的提升,丙酸的降解得到加強,其質量分數降低到70%~85%,VFAs濃度也呈下降趨勢,且生物炭質量濃度每增加2 g/L,VFAs濃度平均下降100 mg/L[9]。劉項等[49]通過氨氮的吸附等溫線、吸附動力學研究發現,高溫條件下制得的生物炭吸附速率較低溫條件下更高(700 ℃> 500 ℃> 300 ℃),但吸附容量較低溫條件下制得的生物炭差(300 ℃>500 ℃>700 ℃),且生物炭對氨氮的吸附容量一般在近中性時較好,偏酸或堿吸附能力都會有所降低,Dang等[50-51]的研究與此相同,并發現在pH值為6.5時吸附容量最好。生物炭粒徑對生物炭的吸附能力也有著很大的影響。一般生物炭粒徑越小,吸附能力越強,滯后期的減小越顯著,對厭氧發酵系統的緩沖效果越好[40,52]。
同樣的,生物炭對厭氧發酵系統緩沖能力的提升作用,更多建立在批式厭氧發酵試驗結果基礎上,而缺少在連續式厭氧發酵系統中的驗證與研究,同時在連續厭氧發酵系統中,如何控制生物炭的使用條件以實現對緩沖能力進一步強化,仍需開展更深入的研究。
2.2.2 微生物載體作用
生物碳具有豐富的孔隙結構,添加生物炭于厭氧發酵體系中,在一定程度上為微生物提供了穩定的載體,促進了微生物的生存、生長和繁殖,提高了微生物的數量和種群結構的多樣性[53]。通過電子顯微鏡及微生物群落分析發現,生物炭表面富集了大量產甲烷古細菌,其中以甲烷桿菌()、 甲烷鬃菌屬()、甲烷八疊球菌屬()為主,且超過古生菌總數的90%[40]。這一點Yang等[54]研究與此相同,并發現,厭氧發酵過程中生物碳的添加有效提升了丙酸鹽向乙酸鹽轉化的速率,間接促進了甲烷的生成。
生物炭理化性質對生物炭的載體作用有著重要的影響。生物炭復雜的孔隙結構、高的比表面積,有助于吸附周圍環境的可溶性有機物、氣體和無機營養物,同時生物炭表層易分解的碳、氮物質也可為微生物生長提供有效的碳源和氮源[55-57]。如陳志良等[16]對比分析了農林業廢棄物生物炭與糞肥源生物炭對微生物的富集作用,結果表明糞肥源生物炭由于表層含有較高的營養元素更有利于微生物的附著。另外,一些細菌可在生物炭表層孔隙深處生存,對過酸環境表現出一定的抵抗力。然而,生物炭表層微量的重金屬元素、吸附周圍環境的金屬離子、生物炭表層的生物質焦油中所含的各類化合物等,可能會通過化學阻斷的方式抑制底物的利用,導致生物炭表層的酶活性發生改變,從而對表層微生物表現出一定的選擇性[55,58-59]。
生物炭具有很好的載體作用,使大量微生物得到富集,有效強化了厭氧發酵的性能及產氣能力。然而生物炭富集微生物的條件及機理仍不明確,生物炭表層微生物菌群種類及其多樣性、微生物分布方面雖有大量研究,但微生物間的聯系仍不夠清晰,需結合微生物菌群特性通過高通量測序、宏基因組手段等作更深入的研究與探索。
2.2.3 強化電子傳遞
厭氧發酵中揮發性脂肪酸氧化細菌和產甲烷菌之間穩定且快速的跨物種電子轉移,包括傳統的H2、甲酸途徑和直接種間電子轉移(direct interspecific electron transfer,DIET)等[60-61],是甲烷生成的重要途徑[62],具體見圖1。H2是氫型產甲烷菌還原 CO2生成甲烷的直接電子供體,對厭氧發酵的進行具有至關重要的作用,由于產甲烷菌的耗 H2及產H2過程主要與NAD+/NADH、FAD/FADH2,Fd(ox)/Fd(red)(,鐵氧化還原蛋白)或輔酶 F420/F420-H2等氧化還原中間體的相互轉化相偶聯[63],所以耗氫型產甲烷途徑具有一定的限制。有時,甲酸亦可替代H2承載電子轉移的任務(見圖1b)。適當提高H2分壓和甲酸濃度,能有效促進H2、甲酸途徑電子的轉移,加快有機質的降解和甲烷的產生。
厭氧微生物的直接種間電子轉移(DIET)機制,即電子不需要借助H2和甲酸等媒介直接從一種微生物直接傳遞給另一種微生物,已經被證明存在于硫還原地桿菌()和金屬還原地桿菌()的共培養體系中[62],且DIET可能是生物電化學系統產甲烷的重要機制也被Zhao等[43]通過焦磷酸測序、FISH等手段首次揭示。同時,通過有效富集土桿菌及產生生物電的細菌也為DIET的強化提供了一種新方法。

圖1 微生物種間電子轉移的途徑[62-64]
近年來,在生物炭強化厭氧發酵技術的研究中,已經有學者發現生物炭的添加可以促進厭氧發酵體系中DIET機制的形成,進而促進厭氧發酵效率的提升。生物炭添加至厭氧發酵系統后,在一定程度上為微生物提供了穩定的載體,各種微生物(如產氫、甲酸及利用CO2的氫營養產甲烷菌等微生物)得到富集[3],利用電子顯微鏡發現大量微生物無序的附著于生物炭表面而非完全以嚴格的物理接觸形式聚集在一起[10],微生物群落分析表明,碳材料可富集氫利用產甲烷菌、致電菌、等可直接進行種間電子轉移的產甲烷菌,由于生物炭的高導電性,在一定程度上能提供效率更高的微生物電子傳遞路徑,使電子供體通過生物炭將電子更高效的轉移到電子受體上,增強了互營菌與產甲烷菌之間的電子交換,實現了直接種間電子轉移(DIET)的潛在增強[54,65],此觀點也被Liu等[66-67]利用產甲烷菌和不能產生H2或甲酸的通過共培養研究所證明。
微生物種間電子傳遞效率隨著電導率的提升而增強[68],在厭氧發酵過程中添加生物炭提高了固液體系的電導率,可增強互營菌與產甲烷菌之間的電子交換,從而促進了厭氧發酵體系中底物的降解及揮發性脂肪酸的生成。同時,生物炭添加,也提高了丙酸的降解速率,并加快乙酸向甲烷的轉化等[65],進一步緩解了厭氧發酵的酸化程度,提升了甲烷的產量及產率。生物炭富集微生物的同時,強化了微生物種間電子傳遞的效率,但目前對氫/甲酸途徑和直接種間電子轉移途徑對厭氧發酵的貢獻率及主導性還不清晰,未來還需要更深入的研究。
生物炭作為一類新型厭氧發酵酸化緩沖功能材料,具有較高的比表面積,復雜的孔隙結構,豐富的元素成分和表面活性基團,也具有很強的吸附結合能力等,可有效提升對厭氧發酵系統酸、氨等抑制物質的緩沖能力。生物炭表面復雜的孔隙結構與豐富的碳、氮等營養元素為厭氧微生物提供良好的生長載體,并提高了厭氧發酵系統內微生物的豐富度。且生物炭具有良好的導電性能,可作為潛在的厭氧微生物種間電子傳遞的介質,為厭氧發酵系統在高濃度VFAs條件下保持穩定產氣提供了新的途徑。以上3點是生物炭投加對厭氧發酵系統的主要促進方式。同時生物炭來源廣泛、成本較低,其在厭氧發酵領域的應用前景光明。目前,國內外關于生物炭在厭氧發酵中的應用研究已有很多,但仍不夠深入,需在以下幾個方面進一步開展工作:
1)厭氧消化過程中氨氮與揮發性脂肪酸共存,兩者對厭氧發酵具有協同拮抗作用,而生物炭對兩者競爭吸附、共吸附及解吸的效果和機理仍待研究。
2)生物炭可富集厭氧微生物,但其表面富集微生物的群落結構及其對厭氧發酵過程的促進作用仍不清晰。
3)生物炭的添加導致的微生物種間電子傳遞機制仍需要進一步闡明,對應的應用技術的研發仍需進一步深入。
4)生物炭對厭氧發酵具有一定的強化作用,但生物炭通過何種強化途徑對厭氧發酵性能更具有主導性仍不清晰,需要在連續厭氧發酵試驗中進行研究與驗證。
5)目前,生物炭強化厭氧發酵的研究仍依賴于實驗室規模的小試試驗,在中試規模乃至工程運行中如何實現生物炭強化厭氧發酵效果仍需要進行驗證,并對生物炭強化厭氧發酵性能以及技術經濟性進行評價研究。
[1] 陳衛紅,石曉旭. 我國農林廢棄物的應用與研究現狀[J]. 現代農業科技,2017(18):148-149. Chen Weihong, Shi Xiaoxu. Application and research status of agriculture and forestry waste in China[J]. Modern Agricultural Science and Technology, 2017(18): 148-149. (in Chinese with English abstract)
[2] 王火根,黃弋華,張彩麗. 畜禽養殖廢棄物資源化利用困境及治理對策:基于江西新余第三方運行模式[J]. 中國沼氣,2018,36(5):105-111. Wang Huogen, Huang Yuhua, Zhang Caili. Difficulties in the utilization of livestock and poultry breeding resources and countermeasures: Based on the third party operation mode of Jiangxi Xinyu[J]. China Biogas, 2018, 36(5): 108-114. (in Chinese with English abstract)
[3] Wang G, Qian L, Xin G, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812.
[4] Fuchs W, Wang X, Gabauer W, et al. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 186-199.
[5] Xiu S, Shahbazi A, Li R. Characterization, modification and application of biochar for energy storage and catalysis: A review[J]. Trends in Renewable Energy, 2017, 3: 86-101.
[6] Shen Y, Linville J L, Ignacio-De Leon P A A, et al. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar[J]. Journal of Cleaner Production, 2016, 135: 1054-1064.
[7] 陳靜文,張迪,吳敏,等. 兩類生物炭的元素組分分析及其熱穩定性[J]. 環境化學,2014,33(3):417-422. Chen Jingwen, Zhang Di, Wu Min, et al. Analysis of elemental composition and thermal stability of two types of biochar[J]. Environmental Chemistry, 2014, 33(3): 417-422. (in Chinese with English abstract)
[8] Linville Jessica L, Shen Yanwen, Ignacio-de Leon Patricia A, et al. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. [J]. Waste Management & Research: The Journal of The International Solid Wastes and Public Cleansing Association, ISWA, 2017, 35(6): 669-679. (in Chinese with English abstract)
[9] Xu J, Mustafa A M, Lin H, et al. Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment[J]. Waste Management, 2018, 78: 849-856.
[10] Gómez X, Meredith W, Fernández C, et al. Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: application of py-gc/ms [J]. Environmental Science & Pollution Research, 2018, 25: 1-12.
[11] 孫媛媛. 蘆竹活性炭的制備、表征及吸附性能研[D]. 濟南:山東大學,2014. Sun Yuanyuan. Preparation, Characterization and Adsorption Properties of Activated Carbon from[D]. Jinan: Shandong University, 2014. (in Chinese with English abstract)
[12] 張千豐,王光華. 生物炭理化性質及對土壤改良效果的研究進展[J]. 土壤與作物,2012,1(4):219-226. Zhang Qianfeng, Wang Guanghua. Research progress in physical and chemical properties of biochar and its effects on soil improvement[J]. Soil and Crops, 2012, 1(4): 219-226. (in Chinese with English abstract)
[13] 卜曉莉,薛建輝. 生物炭對土壤生境及植物生長影響的研究進展[J]. 生態環境學報,2014,23(3):535-540. Xiaoli Bu, Jianhui Xue. Research progress on the effects of biochar on soil habitat and plant growth[J]. Acta Ecologica Sinica, 2014, 23(3): 535-540. (in Chinese with English abstract)
[14] Shen Yanwen, Jessica L Linville, Meltem Urgun-Demirtas, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2removal[J]. Applied Energy, 2015, 158: 300-309.
[15] 謝祖彬,劉琦,許燕萍,等. 生物炭研究進展及其研究方向[J]. 土壤,2011,43(6):857-861. Xie Zubin, Liu Qi, Xu Yanping, et al. Research progress and research direction of biochar[J]. Soil, 2011, 43(6): 857-861. (in Chinese with English abstract)
[16] 陳志良,袁志輝,黃玲,等. 生物炭來源、性質及其在重金屬污染土壤修復中的研究進展[J]. 生態環境學報,2016,25(11):1879-1884. Chen Zhiliang, Yuan Zhihui, Huang Ling, et al. Research progress on the source and properties of biochar and its remediation in heavy metal contaminated soils[J]. Acta Ecologica Sinica, 2016, 25(11): 1879-1884. (in Chinese with English abstract)
[17] 高繼平,隋陽輝,霍軼瓊,等. 生物炭用作水稻育苗基質的研究進展[J]. 作物雜志,2014(2):16-21. Gao Jiping, Sui Yanghui, Huo Yiqiong, et al. Research progress of biochar as a substrate for rice seedlings[J]. Crops, 2014(2): 16-21. (in Chinese with English abstract)
[18] Ho Shih-Hsin, ChenYidi, Yang Zhongkai, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246:142-149.
[19] Meng Jun, Wang Lili, Liu Xingmei, et al. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment[J]. Bioresource Technology, 2013, 142(Complete): 641-646.
[20] Zhao Shixiang, Ta Na, Wang Xudong. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material[J/OL]. Energies, 2017, 10: 1293. doi: 10.3390/en10091293.
[21] Park Cho, Ok Kim, Heo Delaune Seo. Comparison of single and competitive metal adsorption by pepper stem biochar[J]. Archives of Agronomy and Soil Science, 2016, 62(5): 617-632.
[22] Chen H, Lin G, Wang X, et al. Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures[J/OL]. Journal of Renewable & Sustainable Energy, 2016, 8(1): 013112. doi:10.1063/1.4942784.
[23] Li Chunxing, Wang Xingdong, Zhang Guangyi, et al. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification[J]. Bioresource Technology, 2018, 254: 187-193.
[24] Wang D, Ai J, Shen F, et al. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost[J]. Bioresour Technol, 2017, 227: 286-296.
[25] Zheng Xuebo, Yang Zhiman, Xu Xiaohui, et al. Characterization and ammonia adsorption of biochar prepared from distillers' grains anaerobic digestion residue with different pyrolysis temperatures[J]. Journal of Chemical Technology & Biotechnology, 2017, 93 (1): 198–206.
[26] 吳志丹,尤志明,江福英,等. 不同溫度和時間炭化茶樹枝生物炭理化特征分析[J]. 生態與農村環境學報,2015,31(4):583-588. Wu Zhidan, You Zhiming, Jiang Fuying, et al. Physical and chemical characteristics of carboniferous tea branches at different temperatures and time[J]. Journal of Ecology and Rural Environment, 2015, 31(4): 583-588. (in Chinese with English abstract)
[27] 申衛博,張云,汪自慶,等. 木材制備生物炭的孔結構分析[J]. 中國粉體技術,2015,21(2):24-27,31. Shen Weibo, Zhang Yun, Wang Ziqing. Pore structure analysis of biochar prepared from wood[J]. China Powder Technology, 2015, 21(2): 24-27, 31. (in Chinese with English abstract)
[28] Divine D Sewu, Patrick Boakye, Seung H Woo. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste[J]. Bioresource Technology, 2017, 224: 206-213.
[29] Chen Wei, Liao Xindi, Wu Yinbao, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting[J]. Waste Management, 2017, 61: 506-515.
[30] Park Jeong-Hoon, Kang Hyun-Jin, Park Kang-Hee, et al. Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311 .
[31] Chen Tingwei, Luo Ling, Deng Shihuai, et al. Sorption of tetracycline on H3PO4modified biochar derived from rice straw and swine manure[J]. Bioresource Technology, 2018, 267:431-437.
[32] Kizito S, Wu S B, Kirui W K, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. [J]. Science of the Total Environment, 2015, 505: 102-112.
[33] 丁文川,朱慶祥,曾曉嵐,等. 不同熱解溫度生物炭改良鉛和鎘污染土壤的研究[J]. 科技導報,2011,29(14):22-25. Ding Wenchuan, Zhu Qingxiang, Zeng Xiaoyu, et al. Study on the improvement of lead and cadmium contaminated soil by different pyrolysis temperature biochar[J]. Science and Technology Review, 2011, 29(14): 22-25. (in Chinese with English abstract)
[34] De D, Santosha S, Aniya V, et al. Assessing the applicability of an agro-industrial waste to engineered bio-char as a dynamic adsorbent for fluoride sorption[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2998-3009.
[35] 張華. 柚皮基活性炭制備及吸附應用機理研究[D]. 南寧:廣西大學,2013. Zhang Hua. Study on Preparation and Adsorption Mechanism of Pomelo-Based Activated Carbon[D]. Nanning: Guangxi University, 2013. (in Chinese with English abstract)
[36] 周丹丹,吳文衛,趙婧,等. 花生殼和松木屑制備的生物炭對Cu2+的吸附研究[J]. 生態環境學報,2016,25(3):523-530. Zhou Dandan, Wu Wenwei, Zhao Jing, et al. Adsorption of Cu2+by biochar prepared from peanut shell and pine wood chips[J]. Acta Ecologica Sinica, 2016, 25(3): 523-530. (in Chinese with English abstract)
[37] Pan Junting, Ma Junyi, Liu Xiaoxia, et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresource Technology, 2019, 275: 258-265.
[38] Luo C, Fan L, Shao L, et al. Corrigendum to “Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes”[J]. Water Research, 2015, 68: 710-718.
[39] Li Q, Xu M, Wang G, et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresour Technol, 2017, 249: 1009-1016.
[40] Nms S, Zhu M, Zhang Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J]. Bioresource Technology, 2016, 219: 29-36.
[41] Fagbohungbe M O, Herbert B M J, Hurst L, et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J]. Bioresource Technology, 2016, 216: 142-149.
[42] Zhao Zhiqiang, Zhang Yaobin, Woodard T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145.
[43] Zhao Zhiqiang, Zhang Yaobin, Wang Liying, et al. Potential for direct interspecies electron transfer in an electric anaerobic system to increase methane production from sludge digestion[J]. Scientific reports, 2015. doi:10.1038/srep11094
[44] Matthew Essandoh, Bidhya Kunwar, Charles U. Pittman, et al. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J]. Chemical Engineering Journal, 2015, 265: 219-227.
[45] Kangkan Roy, Kapil Mohan Verma, Kumar Vikrant, et al. Removal of patent blue (V) dye using indian bael shell biochar: Characterization, application and kinetic studies[J]. Sustainability, 2018, 10(7): 2669. doi:10.3390/su10082669.
[46] 蔣旭濤,遲杰. 鐵改性生物炭對磷的吸附及磷形態的變化特征[J]. 農業環境科學學報,2014,33(9):1817-1822. Jiang Xutao, Chi Jie. Adsorption of phosphorus by iron modified biochar and changes of phosphorus forms[J]. Journal of Agro-Environment Science, 2014, 33(9): 1817-1822. (in Chinese with English abstract)
[47] 宋婷婷,賴欣,王知文,等. 不同原料生物炭對銨態氮的吸附性能研究[J]. 農業環境科學學報,2018,37(3):576-584 Song Tingting, Lai Xin, Wang Zhiwen, et al. Adsorption properties of different raw materials biochar for ammonium nitrogen[J]. Journal of Agro-Environment Science, 2018, 37 (3): 576-584. (in Chinese with English abstract)
[48] 索桂芳,呂豪豪,汪玉瑛,等. 不同生物炭對氮的吸附性能[J]. 農業環境科學學報,2018,37(6):1193-1202. Suo Guifang, Lü Haohao, Wang Yuxi, et al. Adsorption of nitrogen by different biochars[J]. Journal of Agro-Environment Science, 2018, 37(6): 1193-1202. (in Chinese with English abstract)
[49] 劉項,南紅巖,安強. 刺桐生物炭對水中氨氮和磷的吸附[J].農業資源與環境學報,2018(1):66-73. Liu Xiang, Nan Hongyan, An Qiang. Adsorption of ammonia nitrogen and phosphorus in water by prickly ash biochar[J]. Journal of Agricultural Resources and Environment, 2018(1): 66-73. (in Chinese with English abstract)
[50] Dang Y, Sun D, Woodard T L, et al. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials[J]. Bioresource Technology, 2017, 238: 30-38.
[51] Zhang Y, Yu F, Cheng W, et al. Adsorption equilibrium and kinetics of the removal of ammoniacal nitrogen by zeolite X/activated carbon composite synthesized from elutrilithe[J/OL]. Journal of Chemistry, 2017. doi:10.1155/2017/1936829.
[52] Fan Lü, Cheng Luohao, Mingshao Li, et al. Biochar alleviates combined stress of ammonium and acids by firstly enrichingand then[J]. Water Research, 2016, 90: 34-43.
[53] Zhao H Q, Liu Q, Wang Y X, et al. Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems: Short-term and long-term assessments[J]. Chemical Engineering Journal, 2018, 351: 912-921.
[54] Yang Yafei, Zhang Yaobin, Li Zeyu, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149: 1101-1108.
[55] 韓光明. 生物炭對不同類型土壤理化性質和微生物多樣性的影響[D]. 沈陽:沈陽農業大學,2013. Guangming Han. Effects of Biochar on Physical and Chemical Properties and Microbial Diversity of Different Types of Soil[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese with English abstract)
[56] 李喜鳳. 稻殼炭與有機肥配施對蘋果園土壤有機碳組分及微生物活性的影響[D]. 楊凌:西北農林科技大學,2016. Li Xifeng. Effects of Combined Application of Rice Husk and Organic Manure on Soil Organic Carbon Fraction and Microbial Activity in Apple Orchard[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[57] Preeti Sharma, Uma Melkania. Biosurfactant-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture ofand Enterobacter aerogenes[J]. Bioresource Technology, 2017, 243: 566-572.
[58] Johannes Lehmann, Stephen Joseph. Biochar for Environmental Management: Science, Technology and Implementation[M]. 2 nd Edition. Lonclon: Taylor 8. 2015.
[59] Vrieze J D, Devooght A, Walraedt D, et al. Enrichment of Francis Group Methanosaetaceae, on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream[J]. Applied Microbiology & Biotechnology, 2016, 100(11): 5177-5187.
[60] Zhao Zhiqiang, Zhang Yaobin, Dawn E. Holmes, et al. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2016, 209: 148-156.
[61] Shen Liang, Zhao Qingchuan, Wu Xuee, et al. Corrigendum to: “Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors” [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1358-1367.
[62] Baek G, Kim J, Lees C, et al. Role and potential of direct interspecies electron transfer in anaerobic digestion[J/OL]. Energies, 2018, 11(1): 107. doi:10.3390/en11010107
[63] 張杰,陸雅海. 互營氧化產甲烷微生物種間電子傳遞研究進展[J]. 微生物學通報,2015,42(5):920-927. Zhang Jie, Lu Yahai. Research progress in inter-species electron transfer between oxidized methanogenic microorganisms[J]. Bulletin of Microbiology, 2015, 42(5): 920-927. (in Chinese with English abstract)
[64] 黃玲艷,劉星,周順桂. 微生物直接種間電子傳遞:機制及應用[J]. 土壤學報,2018,55(6):1313-1324. Huang Lingyan, Liu Xing, Zhou Shungui. Direct interspecific electron transfer of microorganisms: Mechanism and application[J]. Acta Pedologica Sinica, 2018, 55(6): 1313-1324. (in Chinese with English abstract)
[65] 張文亞. 鐵及活性炭對污水厭氧處理的強化[D]. 大連:大連理工大學,2017. Zhang Wenya. Strengthening of Anaerobic Treatment of Wastewater by Iron and Activated Carbon[D]. Dalian: Dalian University of Technology, 2017. in Chinese with English abstract)
[66] Liu Fanghua, Amelia-Elena Rotaru, Pravin M Shrestha, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989
[67] Chen Shanshan, Amelia Elena Rotaru, Pravin Malla Shrestha, et al. Promoting interspecies electron transfer with biochar[J]. Sci Rep, 2014, 4: 5019. Doi: 10. 1038/srep05019.
[68] Liu Yuhao, He Pinjing, Shao Liming, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159.
Research progress on biochar enhanced anaerobic fermentation technology of organic wastes
Feng Jing1, Jing Yong1,2, Zhao Lixin1※, Yao Zonglu1, Shen Ruixia1
(1.,,,,100125,; 2.,,150036,)
Anaerobic fermentation is an important technical way to deal with organic wastes in China. However, in the process of treating organic wastes under high load conditions by anaerobic fermentation technology, it is easy to cause anaerobic fermentation operation unstable and the efficiency of organic waste treatment is not high due to the inhibitory substances such as the high concentration of organic acid and ammonia nitrogen. Biochar is a multi-aperture carbonaceous material formed by high-temperature pyrolysis of biomass materials under the anaerobic or anoxic conditions. Biochar has many excellent properties, such as the high specific surface area, good conductivity, mass transfer and heat transfer performance. At the same time, biochar also contains a lot of ash, and the abundant ash contains a lot of elements such as calcium and magnesium, which makes the biochar have good adsorption and ion exchange performance. As an additive for anaerobic fermentation, it can effectively improve the pH value, alkalinity and the acid buffer capacity of the anaerobic fermentation system, and alleviate the inhibition of the excessive production of methane by the volatile fatty acids during the lag period. It can cause the adhesion of microorganisms and had a certain microbial carrier effect. Addition of biochar can effectively solve the problems of the low efficiency of gas production and unstable fermentation in current anaerobic fermentation, and biochar is now widely used in anaerobic fermentation technology research. In recent years, the research status of domestic and foreign showed that biochar could effectively strengthen anaerobic fermentation under certain conditions and improve the treatment efficiency of organic wastes in anaerobic fermentation process. However, for the biochar-enhanced anaerobic fermentation technology approach, there were still no systematic reviewed and reported. In this paper, the chemical composition, surface pore structure, key factors of surface functional groups and important ways of biochar-enhanced anaerobic fermentation technology of biochar materials were systematically analyzed and summarized. Based on the physical and chemical properties of biochar materials, biochar was described. For example, the effects of different types, different particle sizes and different amounts of additive biochar on anaerobic fermentation. And the intensive pathways of anaerobic fermentation technology mainly included: Biochar could effectively improve the buffer capacity of the system, it had a certain microbial carrier function, and it could strengthen the interspecific electron transport of microorganisms. On this basis, the focus of research on anaerobic fermentation technology of organic wastes in the future was proposed. At the same time, it also provided support for the in-depth development of biochar enhanced anaerobic fermentation technology.
wastes; fermentation; biochar; strengthening pathway; research progress
2018-12-30
2019-06-10
現代農業產業技術體系專項資金資助
馮 晶,博士,高級工程師,研究方向為有機廢棄物資源化利用技術研究。Email:fengjing0204@sina.com
趙立欣,博士,研究員,主要從事農業廢棄物能源化研究。Email:zhaolixin5092@163.com
10.11975/j.issn.1002-6819.2019.12.031
X71;X72
A
1002-6819(2019)-12-0256-09
馮 晶,荊 勇,趙立欣,姚宗路,申瑞霞. 生物炭強化有機廢棄物厭氧發酵技術研究[J]. 農業工程學報,2019,35(12):256-264. doi:10.11975/j.issn.1002-6819.2019.12.031 http://www.tcsae.org
Feng Jing, Jing Yong, Zhao Lixin, Yao Zonglu, Shen Ruixia. Research progress on biochar enhanced anaerobic fermentation technology of organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 256-264. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.031 http://www.tcsae.org