999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

地理加權回歸模型結合高光譜反演鹽生植物葉片鹽離子含量

2019-07-23 06:09:38葛翔宇郭婉臻鄧來飛
農業工程學報 2019年10期
關鍵詞:植物區域模型

袁 婕,張 飛,3※,葛翔宇,郭婉臻,鄧來飛

地理加權回歸模型結合高光譜反演鹽生植物葉片鹽離子含量

袁 婕1,2,張 飛1,2,3※,葛翔宇1,2,郭婉臻1,2,鄧來飛1,2

(1. 新疆大學資源與環境科學學院,烏魯木齊 830046;2. 新疆大學綠洲生態教育部重點實驗室,烏魯木齊 830046;3. 新疆大學資源與環境科學學院智慧城市與環境建模自治區普通高校重點實驗室,烏魯木齊 830046)

快速、無損地估算鹽生植物葉片鹽離子含量在植物生長監測、耐鹽植物篩選和土壤鹽漬化監測等方面有實用價值。該研究以新疆艾比湖保護區內鹽生植物為研究對象,通過分析植物葉片鹽離子(K+、Na+、Ca2+、Mg2+)含量與冠層高光譜數據的光譜變換和二維植被指數(比值型植被指數(ratio vegetation index,RVI)、差值型植被指數(difference vegetation index,DVI)、歸一化型植被指數(normalized difference vegetation index,NDVI))的相關性選取特征波段,構建基于地理加權回歸模型(geographically weighted regression,GWR)的葉片鹽離子含量估算模型,并與BP神經網絡模型(back propagation neural network)進行對比,研究基于GWR模型估算干旱區鹽生植物葉片鹽離子的可行性。結果表明,選取特征波段集中表現在紅及短波紅外波段:K+含量在反射率倒數的對數選取的紅光區域內波段使用GWR估算效果最佳;Na+的特征波段在光譜變換下集中于短波紅外區域,二維植被指數集中在近紅外、短波近紅外及黃、橙、紅區域,各種波段選取下GWR對Na+的含量估算均有較好效果,但反射率對數的一階估算效果最好;Ca2+含量在反射率平方根的一階微分下選取的短波紅外波段通過GWR模型估算效果最好;Mg2+含量在DVI選取的位于紅光區域特征波段估算效果最佳,但使用GWR模型對Mg2+的估算精度不及BP模型。分析基于GWR鹽離子模型估算模型發現,含量較高的離子估算效果更好,K+、Na+的模型精度優于Ca2+、Mg2+。在使用GWR模型估算植物葉片鹽離子含量時,特征波段均指向紅及短波紅外波段,符合植被光譜機理的響應。

干旱;葉片;高光譜;GWR模型;鹽生植物;鹽離子

0 引 言

植被是生態系統中的重要組成部分,研究區域植被覆蓋變化對衡量區域生態系統健康、合理利用植物資源和城市規劃具有重要意義[1-2]。鹽生植物對土壤中的鹽分具有一定的吸收作用,生長在鹽漬土環境下下的鹽生植物對降低土壤鹽離子含量具有很好的效果[3]。新疆是中國鹽漬化土壤分布分布范圍最廣、面積最大的區域,鹽漬化土壤占全區土地總面積的7%。土壤鹽漬化是該區域重大環境風險嚴重影響生態安全和人類發展。而鹽生植物對鹽漬化土壤有很好的改良效果,可作為作為自然調節器。鹽生植物可以有效降低土壤含鹽量,疏松土壤,能夠緩解鹽漬化災害,恢復退化的生態系統[4-6]。鹽生植物葉片各鹽離子含量是反映植物生理狀況和土壤鹽漬化程度的重要指標和篩選耐鹽植物的重要參數。然而,目前檢測鹽生植物葉片各鹽離子含量需要破壞性取樣和復雜的化學分析,開發快速、無損的估算鹽生植物葉片各鹽離子含量的技術具有多方面的實用價值。

高光譜數據近年來得到廣泛應用,尤其在定量估算地物參量中發揮出其潛力[7]。高光譜數據具較高的光譜分辨率,所攜帶的精細光譜信息將植物的遙感知識從宏觀監測帶到生理生化過程的微觀識別[8]。植物高光譜在植物生理指標葉綠素與冠層葉綠素密度、全氮、粗纖維、植物干物質量等方面均有研究[9-12]。Wang等[13]通過植物光譜反射率得到葉片尺度的蒸騰量,并找出其敏感波段在2 435、2 440、2 445和2 470 nm處,這對偏最小二乘回歸法(partial least squares regression, PLSR)預測葉片蒸騰作用至關重要。Sampson等[14-15]將高光譜用于植物的病蟲害及脅迫檢測,并在疾病發生初期得到很好的檢測效果;Guo[16]研究表明反演濕地植物氮含量時,植被類型差異對反演模型影響不顯著。然而,干旱區具有其區域的特點,該區域內鹽生植物的光譜信息對各鹽離子敏感程度尚不明確??v觀近年研究,光譜的預測多采用多元線性回歸、BP神經網絡、偏最小二乘、隨機森林法等[17-19],并得到了較好的預測效果,但這些預測方法也具有一定的局限性:默認每個樣點的環境因素對光譜反射率影響是相同的,即模型系數相同[20-21]。因此在考慮地理要素時,應當充分考慮要素的空間異質性,每個樣點代入不同的系數即加入空間坐標進行分析。

地理加權回歸(geographically weighted regression, GWR)模型是針對不同空間子集受空間變化影響的自變量與響應變量之間的關系構建模型,被廣泛應用于具有空間非平穩性特征的空間數據領域。目前已在土壤屬性的空間預測中有顯著效果,然而在受空間關系約束的植被光譜方面尚待挖掘?;诖耍疚某浞挚紤]空間因素,基于GWR模型定量估算鹽離子含量;并闡明葉片鹽離子與相關光譜參量間的關系,優選出特征波段,旨在為后續低空遙感系統在葉片鹽離子估算應用提供理論依據及技術支持。

1 研區概況

新疆艾比湖濕地國家級自然保護區范圍位于82°35′47″~83°53′21″E,44°31′05″~45°09′35″N(圖1),東西長102.63 km,南北寬72.3 km[22]。艾比湖保護區景觀多樣,鹽堿化土壤面積大,鹽生植物種類多樣,常見的鹽生植物有白刺、駱駝刺、堿蓬、鹽節木、鹽爪爪、鹽穗木、鹽穗木等[23-24]。艾比湖國家自然保護區濕地的地理位置和生態位置十分重要,屬于典型的溫帶干旱區濕地,是天山北坡綠洲與沙漠化共軛演化的中心,對地區調節氣候、維護區域生態平衡具有重要意義[25]。

圖1 研究區及采樣點示意圖

2 數據采集與處理

2.1 植物光譜采集與預處理

2017年7月,在研究區進行光譜采集。共設30個樣點,每個樣點選取2~3個優勢種(主要包括花花柴、梭梭、檉柳等)進行光譜及葉片采集。采集到的植被葉片放入牛皮紙袋中,立即用冰保存,以確保新鮮。使用ASD(Analytical Spectral Devices)公司生產FieldSpec3光譜儀進行光譜采集,光譜采樣間隔為1.4 nm(采樣范圍350~1 000 nm)和2 nm(采樣范圍1 000~2 500 nm),重采樣間隔1 nm。測前使用白板進行定標校正,在晴朗無風的正午進行采集,光譜采集時間為12:00—15:00陽光幾乎直射的時間段。為盡量降低背景物影響,光譜儀探頭垂直放置在植被冠層上方約5 cm處,向下對準被測植物,如植物較為稀疏,則使其盡量聚集以確保充滿整個視場。每點測量10個反射光譜,取平均值作為該點的原始光譜反射率。為減小野外噪聲對光譜數據的影響,對測得光譜曲線進行均值、去噪及平滑處理[26]。利用光譜處理軟件ASD View Spec Pro對采集到的光譜曲線進行分析。將校正后的光譜和平均值作為光譜樣本集,進行光譜變換和統計分析。

2.2 葉片含鹽量計算

在野外每個樣點采集2~3種典型植物冠層葉片若干,剪下后裝入牛皮紙袋帶回。植物葉片樣在105 ℃殺青30 min后,70 ℃烘至恒量,再將樣品坩堝放在調溫電爐里進行加熱,待樣品冒煙后,再燒15 min左右。將裝有樣品的坩堝移入高溫電爐中,半開坩堝蓋,由室溫升至400 ℃,保持30 min,再升至550 ℃,燒至灰分近于白色為止,冷卻后稱至恒質量(準確至0.01 g)。取一定量的灰分經粉碎過篩后用HNO3-HCLO4溶液定容,用北京普析TAS-986型原子吸收分光光度計(分辨率0.3 nm)測定K+、Na+、Ca2+和Mg2+的含量[27]。

2.3 光譜變換與特征波段選取

光譜降維主要以波段優選為主,選取標準應具有相關性好、噪聲弱、保留完整、信息量大的的特點[28]。由于原始光譜為野外采集獲得,光譜噪聲多集中于近紅外區域,如圖2a所示,故統一刪除了近紅外區域1 356~ 1 479、1 801~1 999、2 341~2 500 nm 3個區域的波段,見圖2b。波段選取采用2種不同方法:1)為了突顯特征光譜的有效信息,對原始光譜進行14種光譜變換:一階微分、二階微分、求平方根、平方根的一階微分、平方根的二階微分、求對數、對數一階、對數二階、求倒數、倒數一階、倒數二階、求倒數對數、倒數對數一階、倒數對數二階。將植物葉片鹽離子含量與變換后的光譜建立相關性,選出相關性最大的波段作為建模的光譜參數;2)考慮到光譜波段的協同響應,利用更多有效的光譜信息,以消除土壤的噪聲干擾。

圖2 原始光譜和去干擾噪聲后光譜

選取敏感波段組合構建3種二維植被指數[29]:歸一化型植被指數(normalized difference vegetation index,NDVI)、差值型植被指數(difference vegetation index,DVI)、比值型植被指數(ratio vegetation index,RVI)。

式中RR為波段和獲取的光譜反射率。

2.4 模型方法

GWR對普通最小二乘回歸模型進行了空間擴展,將數據的地理位置嵌入到回歸參數之中,使得參數可以進行局部估計,擴展后的模型如下:

式中y為樣點的因變量;x為第個樣點上的第個變量(共個)的觀測值;為樣點總數;(μ,v)為樣點的地理空間坐標;0為回歸常數項,β為第個回歸系數;?為誤差項。如果β在空間保持不變,則模型就變為全局模型,系數估算采用加權最小二乘實現,用矩陣表示為

式中W為由已知點估計待測點時的權重,d為估算點與樣點間的歐氏距離,為帶寬其中帶寬由最小 AIC信息準則確定[30-31]。

本文的GWR回歸過程在GWR4.0軟件支持下完成, GWR模型的預測能力與應用較為廣泛應用的BP神經網絡模型(back propagation neural network)進行了對比。模型精度評價采用決定系數(2)和均方根誤差(root mean squared error,RMSE)進行評價。

3 結果與分析

3.1 葉片鹽離子含量統計分析

K、Na、Ca、Mg是植物生長所需的大量元素,均為金屬元素并以離子的形式存在。葉片鹽離子含量如圖3所示,從均值來看,在艾比湖保護區采集的干旱區鹽生植物中:Na+含量最高,K+次之,而Ca2+與Mg2+含量最低。在后續建模中以3∶1比例選取建模集與驗證集。

圖3 鹽離子含量箱圖

3.2 一維光譜相關性特征波段選擇

將原光譜及14種數學變換后的光譜分別與鉀、鈉、鈣、鎂4種鹽離子進行相關性分析結果如圖4所示。

注:R為反射率,下同。樣本數64。Note:R is reflectance. Same as below. Sample size is 64.

優選出的4種離子建模所需的特征波段如表1所示,K+的敏感波段集中在在400~700 nm的光合有效輻射區域(photosynthetically available radiation,PAR),且集中在不經微分變換的紅光和黃光區域;Na+的敏感波段集中在949~1 355 nm近紅外區域;Ca2+敏感波段集中在665~672和919~1 283 nm可見光紅光及近紅外區域;Mg2+敏感波段主要集中在384、651~669 nm,主要為可見光紅光區域,與紫光區域波段也有一定相關性,但相關性整體偏小。原始光譜與K+、Na+的相關性較高,達到顯著水平,光譜變換使Ca2+、Mg2+含量與光譜的相關性增加,從而能夠按照標準選出建模波段,光譜變換對鹽離子含量與光譜相關性有提高作用。

3.3 二維植被指數特征波段選擇

二維相關系數圖能夠對鹽離子含量和光譜指數之間的相關性進行可視化表達。建立鹽生植物葉片4種鹽離子含量值分別與實測光譜反射率與RVI、DVI、NDVI的決定系數圖(圖5),依不同顏色選取相應的敏感波段。

注:NDVI為歸一化型植被指數;DVI為差值型植被指數;RVI為比值型植被指數;下同。

表1 鹽離子建模波段及光譜變換形式

從圖5可以看出,構建指數選取敏感波段時,同一種離子的不同指數構建方法下二維相關圖具有相似性,即同一鹽離子含量在3種植物指數下的敏感波段集中區域相似。其中,Na+與3種指數的相關性整體大于其他3個離子,敏感波段主要集中在:1 480~1 800 nm,:500~750 nm分別位于近紅外與可見光黃、橙、紅及紅外區域;K+、Ca2+和Mg2+在選取敏感波段時,相關性較小,整體效果不明顯,K+在RVI、DVI集中在:1 650~1 800 nm,:1 650~1 800 nm的近紅外區域,NDVI集中在:650~700 nm,:650~700 nm的紅光區域;Ca2+在3種指數下均集中在:650~700 nm,:650~700 nm的紅光區域;Mg2+主要集中在:350~400、650~700 nm,:350~400、650~700 nm的可見光紫和紅光區域。

優選出的用于建立基于二維指數的模型的敏感波段組合見表2,因為Ca2+在3種指數計算下選取的特征波段相同(684,664),為避免冗余,在3種指數計算中選取RVI指數建模。Mg2+在波段選取時,在RVI和NDVI 2種指數計算下選取的敏感波段相同,為(684,661)。后續建模時,只進行1次建模。Na+與K+含量估算使用表中特征波段進行建模。

3.4 GWR建模對比分析

一維相關性特征選取的策略和二維植被指數特征選取策略都具有較高的相關性,但對定量估算模型的影響不相同,為尋找更好的估算模型,通過各處理下的特征波段構建2種鹽離子估算模型,得到如表3所示的結果。

表2 用于建模的二維指數的特征波段

表3 GWR模型與BP對比及精度檢驗

注:建模樣本48個。驗證樣本為16個。—,負值,不記錄數據。

Note:Samples for model establishment and validation are 48 and 16.—, negative value and not recorded.

圖6 基于建模集的不同方法預測值與實測值

圖7 基于GWR最優模型預測值與實測值驗證

圖8 基于BP最優模型預測值與實測值驗證

4 討 論

2種特征波段選取方案選取波段比較,選取的相關波段具有一定的重合性,K+特征波段在光譜變換下集中在紅光及黃光區域,在波段選取時集中在短波紅外及紅光區域,2種波段選取中重合部分為紅光區域;Na+敏感波段選取中,光譜變換下集中在短波紅外區域,指數選取下集中在紅外及可見光黃、橙、紅區域,重合部分為短波紅外區域;Ca2+在光譜變換下集中在紅光及短波紅外區域,在指數選取中集中在紅外區域,重合部分為紅光區域;Mg2+在光譜變換及指數選取下均集中在紅光及紫光區域。重合部分為紅光及短波紅外區域說明使用紅及短波紅外波段進行離子估算的適用性及精度較好。

基于GWR模型對干旱區的鹽生植物鹽離子估算具有較優的結果。GWR模型對有Na+估算效果最為顯著,這也是由于本研究區屬于干旱區的典型鹽漬化災害區域,依據王勇輝等[33]的研究成果,本研究區鹽漬化土壤主要以中的陽離子含量以K+、Na+為主,植物主要吸收土壤中Na+為主的鹽分,而土壤鹽漬化存在隨機性和空間異質性,所引起的鹽分脅迫也存在相似的屬性。故GWR模型對植物鹽離子含量的預測效果提高的作用大小取決于植物鹽離子與各變量間相關關系的空間非平穩性程度[21]。本研究的鹽離子估算結果與Pandey等[34]的研究結果具有一定的相同點:K+估算精度令人滿意,Ca2+、Mg2+2種離子的估算結果具有潛在的高精度。BP神經網絡在本文估算中表現并不好,或因機器學習需要大的樣本量進行學習、訓練才更易達到較好效果,而本文樣本數量較少,若加大樣本量,機器學習的精度應所提高。依據本文所研究內容及樣本點設置,選取最優模型時,不僅需具有較高的精度還需要考慮訓練的成本。在區域范圍的小樣本條件下,GWR能夠取得高精度值得進行推廣。

本文基于GWR方法對植物鹽離子含量得到較好的估算結果,尤其Na+預測最優,說明地理數據的非平穩性在其中起到關鍵作用。然而光譜數據僅僅提供地表參量的信號,從結果中可見一些光譜變換沒有起到挖掘信息的作用,仍然需要引入深度挖掘技術進一步完善。此外,考慮到模型的局限性,易受到空間樣本量和離子含量的影響,可嘗試應用遷移學習調試,使模型適用于不同季節、不同地區,以增加其普適性,進一步驗證,為GWR模型在植被鹽離子的光譜估算中提供更全面的角度。

5 結 論

通過對艾比湖保護區內植物鹽離子的檢測,相較于其他3種鹽離子,Na+在鹽生植物中含量最高,K+次之,Ca2+、Mg2+含量相近。通過實測光譜14種波段變換及3種植物指數的構建選取特征波段進行建模,結果如下:

1)在建模過程中,Na+的含量原始光譜呈負相關,經光譜變換后,選取特征波段集中在949~1 355 nm短波紅外區域,建模精度最好2均大于0.7。在構建指數時,波段集中在1 480~1 800 nm,500~750 nm分別位于短波紅外與可見光黃、橙、紅區域。模型驗證精度除差值型植被指數(difference vegetation index,DVI)外,擬合度均達到0.7以上。使用光譜數據估算Na+含量具有較高精度并有多種建模方法。

2)K+含量估算選取波段在400~700 nm的光合活躍區,且集中在不經微分變換的紅光和黃光區域及在構建植被指數后選取的近紅外區域。除通過反射率倒數一階、DVI、比值型植被指數(ratio vegetation index,RVI)方法選取波段外,建模效果較好。其中lg(1/)選取特征波段效果最好。Ca2+、Mg2+含量較低,且與原始光譜的相關性較低,經變換后的光譜能有效提高相關性,并在估算建模時Ca2+使用光譜變換選取特征波段建模效果較植被指數選取波段建模效果更優,建模最優為平方根的一階微分;Mg2+估算時,只有DVI選取的波段表現較好。

總體而言,在地理加權回歸(geographically weighted regression, GWR)模型下鹽離子模型估算精度整體比BP神經網絡模型(back propagation neural network)高。GWR估算模型按精度評價排序為K+、Na+>Ca2+、Mg2+,對含量較高的離子估算效果更好。4種離子在不同波段選取方法下,最優估算模型的特征波段均集中于紅及短波紅外波段??煽紤]進一步推廣紅及短波紅外波段對鹽生植物葉片鹽離子含量估算研究。

[1] 田華麗,夏藝,梁士楚,等. 桂林漓江濕地植被種類組成及其區系成分[J]. 濕地科學,2015,13(1):103-110. Tian Huali, Xia Yi, Liang Shichu, et al. Species composition and flora of wetland vegetation in Lijiang River, Guilin[J]. Wetland Science, 2015, 13(1): 103-110. (in Chinese with English abstract)

[2] 韓濤,王大為. 2000—2014年石羊河流域植被覆蓋變化研究[J]. 中國農學通報,2017,33(13):66-74. Han Tao, Wang Dawei. Change of vegetation coverage in Shiyang River Basin 2000-2014[J]. Chinese Agricultural Science Bulletin, 2017, 33(13): 66-74. (in Chinese with English abstract)

[3] 趙可夫,范海,江行玉,等. 鹽生植物在鹽漬土壤改良中的作用[J]. 應用與環境生物學報,2002,8(1):31-35. Zhao Kefu, Fan Hai, Jiang Xingyu, et al. Improvement and utilization of saline soil by planting halophytes[J]. Chin J Appl Environ Biol, 2002, 8(1): 31-35. (in Chinese with English abstract)

[4] 趙丹,余冬梅,胡夏嵩,等. 青海柴達木盆地大柴旦鹽湖區鹽生植物降鹽效應[J]. 鹽湖研究,2016,24(4):37-47. Zhao Dan, Yü Dongmei, Hu Xiasong, et al. The bio- desalinization effect by halophytes in Da Qaidam salt lake area[J]. Journal of Salt Lake Research. 2016, 24(4): 37-47. (in Chinese with English abstract)

[5] 黃建,田長彥,卞衛國,等. 陳春秀.4種鹽生植物生長對土壤石油污染的響應[J]. 干旱區研究,2014,31(1):100-104. Huang Jian, Tian Changyan, Bian Weiguo, et al. Response of growth of four halophyte species in oil-contaminated soil[J]. Arid Zone Research, 2014, 31(1): 100-104. (in Chinese with English abstract)

[6] 郗金標,張福鎖,毛達如,等. 新疆鹽生植物群落物種多樣性及其分布[J]. 林業科學,2006,42(10):6-12. Xi Jinbiao, Zhang Fusuo, Mao Daru, et al. Species diversity and distribution of halophytic vegetation in Xinjiang[J]. Scientia Silvae Sinicae, 2006, 42(10): 6-12. (in Chinese with English abstract)

[7] Yue J, Feng H, Jin X, et al. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera[J]. Remote Sensing, 2018, 10(7): 1138.

[8] 劉煒,常慶瑞,郭曼,等. 夏玉米可見/近紅外光小波主成分提取與氮素含量神經網絡檢測[J]. 紅外與毫米波學報,2011,30(1):48-54. Liu Wei, Chang Qingrui, Guo Man, et al. Detection of leaf nitrogen content of summer corn using visible/near infrared spectra[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 48-54. (in Chinese with English abstract)

[9] 劉克,趙文吉,郭逍宇,等. 基于地面實測光譜的濕地植物全氮含量估算研究[J]. 光譜學與光譜分析,2012,32(2):465-471. Liu Ke, Zhao Wenji, Guo Xiaoyu, et al. Estimating Total nitrogen content in wetland vegetation based on measured reflectance spectra[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 465-471. (in Chinese with English abstract)

[10] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.

[11] 易秋香,黃敬峰,王秀珍. 玉米粗纖維含量高光譜估算模型研究[J]. 紅外與毫米波報,2007,26(5):393-395. Yi Qiuxiang, Huang Jingfeng, Wang Xiuzhen. Hyperspectral estimation models for crude fibre concentration of cone[J]. Journal of Infrared and Millimeter Waves, 2007, 26(5): 393-395. (in Chinese with English abstract)

[12] 劉冰峰,李軍,賀佳,等. 基于高光譜植被指數的夏玉米地上干物質量估算模型研究[J]. 農業機械學報,2016,47(3):254-262. Liu Bingfeng, Li Jun, He Jia, et al. Estimation models of above-ground dry matter accumulation of summer maize based on hyperspectral remote sensing vegetation indexes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 254-262. (in Chinese with English abstract)

[13] Wang Q, Jin J. Leaf transpiration of drought tolerant plant can be captured by hyperspectral reflectance using PLSR analysis[J]. iForest-Biogeosciences and Forestry, 2015, 9: e1-e8.

[14] Sampson P H, Zarcotejada P J, Mohammed G H, et al. Hyperspectral remote sensing of forest condition: estimating chlorophyll content in tolerant hardwoods.[J]. Forest Science, 2003, 49(3): 381-391.

[15] Lowe A, Harrison N, French A P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[J]. Plant Methods, 2017, 13(1): 80.

[16] Guo C, Guo X. Estimating leaf chlorophyll and nitrogen content of wetland emergent plants using hyperspectral data in the visible domain[J]. Spectroscopy Letters, 2016, 49(3): 180-187.

[17] 彭杰,向紅英,王家強,等. 葉面降塵的高光譜定量遙感模型[J]. 紅外與毫米波學報,2013,32(4):313-319. Peng Jie, Xiang Hongying, Wang Jiaqiang, et al. Quantitative model of foliar dustfall content using Hyperspectral remote sensing[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 313-319. (in Chinese with English abstract)

[18] 田喜,何紹蘭,呂強,等. 高光譜圖像信息的柑橘葉片光合色素含量分析技術研究[J]. 光譜學與光譜分析,2014,34(9):2506-2512. Tian Xi, He Shaolan, Lü Qiang, et al. Determination of photosynthetic pigments in citrus leaves based on hyperspectral images data[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2506-2512. (in Chinese with English abstract)

[19] 徐明星,吳紹華,周生路,等. 重金屬含量的高光譜建模反演:考古土壤中的應用[J]. 紅外與毫米波學報,2011,30(2):109-114.Xu Mingxing, Wu Shaohua, Zhou Shenglu, et al. Hyperspectral reflectance models for retrieving heavy metal content: application in the archaeological soil[J]. Journal of Infrared and Millimeter Waves, 2011, 30(2): 109-114. (in Chinese with English abstract)

[20] Fortheringham A S, Chanrlton M, Brunsdon C. The geographically of parameter space: An investigation of spatial nonstationarity[J]. International Journal of Geographical Information Systems, 1996, 10: 605-627.

[21] 江振藍,楊玉盛,沙晉明. GWR模型在土壤重金屬高光譜預測中的應用[J]. 地理學報,2017,72(3):533-544. Jiang Zhenlan, Yang Yusheng, Sha Jinming. Application of GWR model in hyperspectral prediction of soil heavy metals[J]. Acta Geographica Sinica, 2017, 72(3): 533-544. (in Chinese with English abstract)

[22] 王璐, 丁建麗. 艾比湖保護區荒漠植被時空過程變化及其植被指數影響因素分析[J]. 草業學報,2015,24(5):4-11. Wang Lu, Ding Jianli. Vegetation index feature change and its influencing factor and spatial-temporal process analysis of desert grassland in the Ebinur Lake Nature Reserve, Xinjiang[J]. Acta Prataculturae Sinica, 2015, 24(5): 4-11. (in Chinese with English abstract)

[23] 龔雪偉,呂光輝,馬玉,等. 艾比湖流域2種典型荒漠鹽生植物冠下土與葉片的生態化學計量特征[J]. 林業科學,2017,53(4):28-36. Gong Xuewei, Lü Guanghui, Ma Yu, et al. Ecological stoichiometry characteristics in the soil under crown an leaves of two desert halophytes with soil salinity gradients in Ebinur lake basin[J]. Scientia Silvae Sinicae, 2017, 53(4): 28-36. (in Chinese with English abstract)

[24] Wang X, Zhang F, Kung X, et al. New methods for improving the remote sensing estimation of soil organic matter content(SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR)in northwest China[J]. Remote Sensing of Environment, 2018, 218(1): 104-118.

[25] 井云清,張飛,張月,等. 4個時期艾比湖濕地國家級自然保護區植被覆蓋度變化[J]. 濕地科學,2016,14(6): 895-900. Jing Yunqing, Zhang Fei, Zhang Yue, et al. Changes of vegetation coverage in Aibihu wetland national nature reserve for 4 periods[J]. Wetland Science,2016, 14(6): 895-900. (in Chinese with English abstract)

[26] 張賢龍,張飛,張海威,等. 基于光譜變換的高光譜指數土壤鹽分反演模型優選[J]. 農業工程學報,2018,34(1):110-117.Zhang Xianlong, Zhang Fei, Zhang Haiwei, et al. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 110-117. (in Chinese with English abstract)

[27] 李哲,張飛,馮海寬,等. 基于波段組合的植被葉片鹽離子估算研究[J]. 光學學報,2017,37(11):317-331. Li Zhe, Zhang Fei, Feng Haikuan, et al. Research on the estimation of salt Ions of vegetation leaves based on band combination[J]. Acta Optica Sinica, 2017, 37(11): 317-331.(in Chinese with English abstract)

[28] 吳一全,周楊,盛東慧,等. 基于子空間中主成分最優線性預測的高光譜波段選擇[J]. 紅外與毫米波學報,2018,37(1):119-128. Wu Yiquan, Zhou Yang, Sheng Donghui, et al. Band selection of hyperspectral image based on optimal linear prediction of principal components in subspace[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 119-128. (in Chinese with English abstract)

[29] Ge X, Wang J, Ding J, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring[J]. Peer J, 2019, 7: e6926.

[30] 江振藍,楊玉盛,沙晉明. 福州市土壤鉻含量高光譜預測的GWR模型研究[J]. 生態學報,2017,37(23):533-544. Jiang Zhenlan, Yang Yusheng, Sha Jinming. Application of GWR model in hyperspectral prediction of soil heavy metals[J]. Acta Geographica Sinica, 2017, 37(23): 533-544. (in Chinese with English abstract)

[31] Mcmillen D P. Geographically weighted regression: The analysis of spatially varying relationships[J]. American Journal of Agricultural Economics, 2004, 86(2): 554-556.

[32] Steidle Neto A J, Lopes D C, Pinto F A C, et al. Vis/NIR spectroscopy and chemometrics for non-destructive estimationof water and chlorophyll status in sunflower leaves[J]. Biosystems Engineering, 2017, 155: 124-133.

[33] 王勇輝,馬蓓. 艾比湖主要補給河流下游河岸帶土壤鹽分特征[J]. 干旱區研究,2013,30(2):196-202. Wang Yonghui, Ma Bei. Soil Salinity in the riparian zone in lower reaches of the main feeding rivers of the Ebinur lake[J]. Arid Zone Research, 2013, 30(2): 196-202. (in Chinese with English abstract)

[34] Pandey P, Ge Y, Stoerger V, et al. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging[J]. Frontiers in Plant Science, 2017, 8: 1348.

Leaf salt ion content estimation of halophyte plants based on geographically weighted regression model combined with hyperspectral data

Yuan Jie1,2, Zhang Fei1,2,3※, Ge Xiangyu1,2, Guo Wanzhen1,2, Deng Laifei1,2

(1.830046,; 2.830046,; 3.,,,830046,)

Rapid and non-destructive estimation of leaf salt ion concentrations in halophytes can provide valuable information for plant growth monitoring, selection of salt-tolerant plants and soil salinity monitoring. In this study, the canopy reflectance (350-2 500 nm) and the leaf salt ion (K+, Na+, Ca2+, Mg2+) concentration in the halophytes were measured in the Ebinur Lake Protection Zones, Xinjiang, China. Data collected includes hyperspectral data and leaf salt ion data, and the relationships between the leaf ion concentrations and the selected spectral indices were analyzed.K+sensitive wave bands on the photosynthetic effective radiation area of the 400- 700 nm (photosynthetically available radiation, PAR), and focused on the red and yellow areas without differential transform; The sensitive bands of Na+are concentrated in the near infrared region of 949- 1 355 nm. Ca2+sensitive bands were concentrated in the visible red and near-infrared regions of 665-672 and 919-1 283 nm. Mg2+sensitive bands were mainly concentrated in 384, 651- 669 nm, mainly in the visible red light region. There was a certain correlation with the ultraviolet region band, but the correlation was generally small. The correlation between the original spectrum and K+and Na+was relatively high, reaching a significant level. Spectral transformation increased the correlation between the contents of Ca2+and Mg2+and the spectrum, so that modeling bands could be selected according to the standard. Spectral transformation could improve the correlation between the content of salt ions and the spectrum.There were 64 samples in total, and the proportion of samples used for modeling and verification was 3:1.2and root mean squared error (RMSE) were used as accuracy evaluation criteria. A Geographically Weighted Regression (GWR) model and a back propagation (BP) model were constructed for estimating leaf salt ion concentrations with the spectral transform and the spectral indices as ratio vegetation index (RVI), difference vegetation index (DVI) and normalized difference vegetation index, and achieved a promising accuracy. The GWR estimation was the best in the bands in the red light region selected by the reciprocal logarithm of reciprocal of reflectance. The characteristic bands of Na+were concentrated in the short-wave infrared region under the spectral transformation, and the two-dimensional vegetation index was concentrated in the near-infrared region, short-wave near-infrared region, yellow, orange and red region. The short-wave infrared band selected under first order of square root for Ca2+content had the best estimation effect through GWR model. Mg2+content was best estimated in the characteristic bands in the red light region selected by DVI, but the GWR model was not as accurate as BP model in estimating Mg2+content. Based on the GWR salt ion model, the estimation of ions with higher content was better, and the accuracy of K+and Na+ models was better than that of Ca2+and Mg2+. When the GWR model was used to estimate the salt ion content in plant leaves, the characteristic bands all pointed to red and short-wave infrared bands. The model based on logarithms of reciprocal of reflectance and GWR for estimated K+produced the superior performance (2=0.930, RMSE=0.018 mg/kg). The optimal GWR model with the highest2and lowest RMSE was estimation model on Na+(2=0.984, RMSE=0.041 mg/kg) via processing. For the estimation model on Ca2+, the model produced reasonable outcome using first order of square root of reflectance-GWR strategy. Moreover, compared with BP model, the GWR model had insufficient estimation for Mg2+whereas DVI scheme contributed to improve accuracy of the BP estimated model. By comparison, the GWR model yielded better results in higher-content ion models. In conclusion, our study showed GWR model was effective for estimating leaf salt ions through vegetation spectral information. Sensitive bands for salt ions were prominent in the red bands and short-wave infrared bands, which were consistent with the response of vegetation spectral mechanism.

drought; leaf; hyperspectra; GWR model; halophyte; saline ions

10.11975/j.issn.1002-6819.2019.10.015

V232.4

A

1002-6819(2019)-10-0115-10

2019-01-30

2019-04-10

國家自然科學基金-新疆本地優秀青年培養專項(U1503302);新疆維吾爾自治區自然科學基金項目(2016D01C029)

袁 婕,主要從事干旱區植物遙感應用研究。Email:yuanjie_0516@163.com

張 飛,博士,教授,主要從事干旱區資源與環境遙感應用研究。Email:zhangfei3s@163.com

袁 婕,張 飛,葛翔宇,郭婉臻,鄧來飛. 地理加權回歸模型結合高光譜反演鹽生植物葉片鹽離子含量[J]. 農業工程學報,2019,35(10):115-124. doi:10.11975/j.issn.1002-6819.2019.10.015 http://www.tcsae.org

Yuan Jie, Zhang Fei, Ge Xiangyu, Guo Wanzhen, Deng Laifei.Leaf salt ion content estimation of halophyte plants based on geographically weighted regression model combined with hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 115-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.015 http://www.tcsae.org

猜你喜歡
植物區域模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
哦,不怕,不怕
將植物穿身上
3D打印中的模型分割與打包
關于四色猜想
分區域
植物罷工啦?
植物也瘋狂
主站蜘蛛池模板: 久久国产亚洲偷自| 国产欧美日韩资源在线观看| 性欧美在线| 精品综合久久久久久97| 99伊人精品| 99成人在线观看| 亚洲第一成年网| 欧美曰批视频免费播放免费| 中文字幕日韩欧美| 精品午夜国产福利观看| 在线免费看黄的网站| 日本免费高清一区| 精品国产自在在线在线观看| a级毛片一区二区免费视频| 亚洲永久视频| 亚洲一区二区三区国产精品 | 呦女亚洲一区精品| 久操线在视频在线观看| 精品视频福利| 欧美一区精品| 亚洲精品国产首次亮相| а∨天堂一区中文字幕| 草逼视频国产| 亚洲日韩精品无码专区97| 一边摸一边做爽的视频17国产 | 无码一区18禁| 免费一级毛片在线观看| 综合成人国产| 丁香五月婷婷激情基地| 91九色国产porny| 日韩专区第一页| 久久精品午夜视频| 2019年国产精品自拍不卡| 一级成人欧美一区在线观看| 国产亚洲欧美日本一二三本道| 亚洲综合亚洲国产尤物| 国产区精品高清在线观看| 国产精品成人观看视频国产| 亚洲无码91视频| 国产精品视频第一专区| 色妞永久免费视频| 日本成人精品视频| 996免费视频国产在线播放| 国产又色又刺激高潮免费看| av在线手机播放| 久久黄色小视频| 欧美一区二区福利视频| 丝袜美女被出水视频一区| 国产无码在线调教| 欧美日韩北条麻妃一区二区| 亚洲视频在线观看免费视频| 欧美在线视频不卡第一页| 美美女高清毛片视频免费观看| 九色综合视频网| 久久美女精品国产精品亚洲| 国产小视频a在线观看| 亚洲天堂.com| 亚洲无码A视频在线| a亚洲视频| 先锋资源久久| 亚洲人网站| 国产午夜无码片在线观看网站| 亚洲男人的天堂视频| 亚洲欧美天堂网| 成人福利在线视频免费观看| 久久久久亚洲av成人网人人软件| 亚洲第一av网站| 久久人人97超碰人人澡爱香蕉| 亚洲天堂区| 久久这里只有精品8| 美女被操91视频| 毛片大全免费观看| jizz亚洲高清在线观看| 丝袜久久剧情精品国产| 成人午夜视频免费看欧美| 亚洲天堂高清| 亚洲区欧美区| 欧美国产综合视频| 国产精品妖精视频| 午夜福利无码一区二区| 99视频精品全国免费品| 国产精品妖精视频|