宋 杰,李光林,楊曉東,張 信,劉旭文
基于四方對稱光源透射光譜的臍橙可溶性固形物檢測
宋 杰,李光林※,楊曉東,張 信,劉旭文
(西南大學工程技術學院,重慶 400715)
提高利用可見-近紅外(Vis-NIR)透射光譜檢測臍橙內部物質含量的準確性在生產實際中具有重要意義。該研究利用特制的可見-近紅外透射光譜測量裝置采集了199個福本臍橙果蒂向上、水平、向下3種位置的透射光譜,比較了多元散射校正(multivariate scattering correction, MSC)、標準正態變量變換(standard normal variate transformation, SNV)、一階導數和二階導數預處理的效果,并采用效果最好的一階導數對透射光譜進行預處理。在此基礎上,結合后向區間偏最小二乘法(backward interval partial least squares, BiPLS)優選特征波段,競爭性自適應重加權采樣(competitive adaptive re-weighted sampling, CARS)挑選特征變量建立了基于果蒂向上、水平、向下3種位置各自的透射光譜以及3種位置的平均光譜和加權光譜的可溶性固形物(soluble solid content, SSC)的偏最小二乘(partial least squares, PLS)模型。在果蒂向上、水平、向下3種位置各自的透射光譜建立的PLS模型中,基于果蒂水平位置透射光譜的PLS模型最優,校正相關系數為0.914,校正均方根誤差為0.380,預測相關系數為0.924,預測均方根誤差為0.404。基于果蒂向上、水平、向下3種位置平均透射光譜和加權透射光譜建立的PLS模型均取得了較好的預測結果,預測相關系數均大于0.91,預測均方根誤差均小于0.43。該研究可以為臍橙內部物質含量在線檢測裝備的研制提供參考。
果實;光譜分析;模型;臍橙;四方對稱光源;透射;可溶性固形物
臍橙是一種營養豐富、經濟價值較高的水果,在中國有廣泛的種植面積。隨著生活水平的提高,人們在購買水果時不僅僅局限于對外觀品質的要求,而是更加關注其內部品質[1-2]。因此渠道商越來越注重臍橙的產后分級處理,提高臍橙的商品化價值。
可見-近紅外光譜(Vis-NIR)技術是一種快速、非破壞性檢測技術,已廣泛應用于水果內部品質的無損檢 測[3-5],如蘋果[6-9]、桃子[10-11]、西瓜[12-13]、梨[14-15]等。可溶性固形物(soluble solid content, SSC)是水果內部品質評價的主要指標之一。在利用Vis-NIR技術實現臍橙SSC檢測的研究中,Jamshidi等[16]和Ncama等[17]采用反射測量方式沿臍橙赤道部位采集多點光譜求平均建立PLS模型對臍橙SSC進行檢測。由于反射測量中光的穿透深度有限,而可溶性固形物在臍橙中沿橫徑和縱徑分布都不均勻[18],因此利用反射測量方式獲取的光譜信息不能承載臍橙果實內部的SSC信息。
近年來部分研究人員利用透射測量方式獲取臍橙果實內部的光譜信息進行分析。劉燕德等[19-20]利用水果分級傳送帶,通過人工上果將臍橙放置在果托上,果蒂與果臍連線方向與傳送帶運動方向一致,采集赤道部位的光譜對臍橙SSC進行動態檢測。由于果皮對光的衰減作用較強[21-22],并且果皮在果臍、赤道、果蒂部位的厚度不均勻,導致利用透射測量方式獲取臍橙內部物質含量的光譜信息時會受到光源布置和臍橙放置位置的影響。許文麗等[23]使用了2個鹵鎢燈水平布置于樣品兩側,實現半透射檢測,研究了果蒂與果臍連線與入射光線平行、垂直和任意角度時對近紅外光譜檢測結果的影響。然而,由于臍橙形狀大小不一致,并且果皮厚度不均勻,僅通過兩側光源進行輻射時還存在一定的測量誤差。為了獲取臍橙內部更全面的透射光譜信息,進一步降低測量誤差,本文通過自己設計的光源系統將4個鹵鎢燈對稱布置于樣品四周,光源中心軸線與信號探頭豎直中心軸線所成角度為40°,且光源中心軸線的交點為樣品下部,通過樣品下部接收透射信號。比較研究了基于果蒂向上、水平、向下3種位置透射光譜的PLS模型對臍橙SSC進行預測的效果。在此基礎上,研究了利用3種位置平均光譜和加權光譜建模對臍橙SSC進行預測的效果,以期為臍橙內部物質含量在線檢測裝備的研制奠定更多的基礎。
于2017年12月20日在重慶巫山(經度:109.86,緯度:31.10)采摘了199個福本臍橙樣品進行試驗。樣品運輸至實驗室之后,剪掉枝葉,保留果蒂,每個臍橙均編號并裝入厚度為0.02 mm的聚乙烯袋,保存于溫度為4 ℃,相對濕度為60%的儲藏室中,保存時間不超過 3 d。在進行試驗前將樣品放置于室溫環境(14±2)℃ 24 h。
臍橙的透射光譜是通過我們自己設計的光譜測量系統采集的,測量系統包括一個580 mm × 600 mm × 610 mm的箱體用于隔離系統外部的光,箱體固定,并在底部設置有防震墊。箱體內部設置有隔離板,防止光源對信號接收探頭造成干擾,隔離板中間設置有一個帶通孔的果托(孔徑為44 mm)。光源包括4個24 V/100 W的鹵鎢燈泡(OSRAM, 64460U, 3 000 K, Germany),對稱設置在果托上方。通過試驗測試,確定光源中心軸線與信號探頭豎直中心軸線所成角度為40°,燈泡中心與待測臍橙中心的水平距離為100 mm,垂直距離為80 mm時,獲取的透射信號最強。為了達到更好的聚光效果,使用了發散角為10°的燈杯。為了便于散熱,燈頭處連接了一個直徑為110 mm,厚度為10 mm的環形散熱器(60齒結構),連接處填充了導熱硅脂。2個風扇(Sanyo GV1224P1H03, Japan)正對設置在箱體左右兩側,與散熱器位置匹配,一個用于吸入箱體外的冷空氣,另一個用于排出箱體內的熱空氣。電源(WEHO, SCN-800-24, China)、光譜儀(Ocean Optics, QEpro, USA,響應范圍400~980 nm)、信號接收探頭(視場角約43°)設置在隔離板下面,與光源完全隔離。使用了一臺安裝有光譜采集軟件(OceanView1.6.3)的計算機(Lenovo, IdeaPad 710S, China)采集光譜數據。臍橙透射光譜測量系統原理圖如圖1所示。
光譜儀的積分時間設置為50 ms,在采集透射光譜前保存了參考光譜和暗光譜,則透過率可表示為

根據下式將透過率轉化為吸光度:

式中為吸光度。
分別采集了臍橙3個位置的透射光譜,包括果蒂向上(P1)、果蒂水平(P2)、果蒂向下(P3)。在每個位置沿水平方向旋轉臍橙,每間隔120°采集一次光譜,共采集3次取平均,如圖2所示。
圖2中可以看到幾個明顯的特征吸收峰,出現在680 nm附近的峰是由于色素吸收所致[24],760 nm附近的吸收峰是OH鍵伸縮振動和水的吸收的四倍頻[25],970 nm附近的吸收峰是OH鍵伸縮振動和水的吸收的三倍頻[26]。圖2c中存在幾條光譜與正常光譜發生偏離,這幾個樣品屬于畸形果,果形不正,為了防止漏光,在擺放該臍橙測量果蒂向下位置的透射光譜時,果蒂并不是朝向正下方,而是有些偏離,導致了這幾個樣品在該位置的透過率偏高,從而導致光譜曲線發生偏離。考慮到實際應用中存在畸形果對測量的影響,為了保證模型的適應能力,我們在建模時并未將這些偏離的光譜數據進行剔除。

1. 風扇 2. 光源 3. 臍橙 4. 散熱器 5. 隔板 6. 果托 7. 探頭 8. 光譜儀 9. 計算機
采集完光譜后,測量了樣品的理化參數。通過游標卡尺測量了樣品的橫徑和縱徑,以及樣品在果臍部位、赤道部位和果蒂部位的皮厚。之后用榨汁機(KESUN, KP60SC, China)將樣品和皮一同榨成汁。將汁液過濾后利用數字折射計(ATAGO, RX-5000i-Plus, Japan)測量了樣品的SSC含量。理化參數統計結果如表1所示。
表1中臍橙樣品的橫徑平均值和縱徑平均值相差不大,表明該品種臍橙果形為類球形。從臍橙不同部位皮厚統計結果可以看出,果蒂部位的皮最厚。
1.4.1 后向區間偏最小二乘法

1.4.2 競爭性自適應重加權算法
競爭性自適應重加權算法(competitive adaptive re-weighted sampling, CARS)的采樣過程類似于達爾文進化論中的“適者生存”原則,它是以一種有效和競爭的方式實現的[29]。假設蒙特卡羅采樣次數為,然后CARS依次從次蒙特卡羅采樣中以迭代和競爭的方式選擇個波長子集。在CARS中,PLS模型的回歸系數的絕對值被用來作為評估每個變量重要性的指標。在每次采樣中,以固定比例隨機選擇樣本建立校正模型,然后采用指數遞減函數和自適應重加權算法根據回歸系數選擇關鍵波長,最后通過PLS交叉驗證來評估所選擇的數據集[30]。

注:圖2a、2b、2c中從左至右依次為光譜采集位置俯視圖、光譜采集位置正視圖、該位置的平均透射光譜,圖中A、B、C為臍橙每旋轉120°所對應的位置。

表1 福本臍橙理化參數統計結果
利用軟件The Unscrambler X 10.4,采用outlier方法剔除了一個異常樣品,并將剩余樣品隨機劃分為校正集(150個)和預測集(48個)。分別采用SNV、MSC、一階導數和二階導數對臍橙透射光譜進行預處理,并通過PLS交叉驗證來評估預處理效果,如表2所示。
表2中,P1、P2、P3的加權系數是根據P1、P2、P3光譜的交叉驗證結果,采用貢獻率的思路來確定的。P2光譜的交叉驗證結果明顯優于P1和P3,則進行加權時權重應最大,P3光譜的交叉驗證結果最差,則進行加權時權重應最小。分別以0.05為取值間隔進行試驗,并比較PLS交叉驗證結果,最終確定最佳系數為0.15、0.8和0.05。從表2可以看出,采用SNV、MSC、一階導數和二階導數對P1、P2、P3位置的光譜及三者的平均光譜和加權光譜進行預處理時,均是一階導數效果最佳,但由于不同位置采集的透射光譜的吸光度和信噪比有差異,因此進行預處理時通過調整窗口數來獲得最佳預處理結果。4種預處理方法中,采用SNV和MSC預處理的結果相差不大,這與文獻報道的結論一致[31]。采用二階導數預處理后PLS模型的因子數少于一階導數預處理后的PLS模型,但是交叉驗證結果比一階導數預處理略差。P1、P2、P3位置的光譜及三者的平均光譜和加權光譜經一階導數預處理后建立的PLS模型中,基于P1、P2和P3位置加權光譜的PLS模型最優。將上述經一階導數預處理后的光譜數據用于后續分析,為便于表示,記(P1+P2+P3)/3為P4,(0.15P1+0.8P2+0.05P3)為P5,采用BiPLS優選特征波段,將P1、P2、P3、P4、P5的光譜數據分別分為30~50段(間隔為5段),并基于PLS模型的RMSECV評估分段效果。當分段數分別為35、40、30、35、40時效果最佳,統計結果如表3所示。

表2 基于不同預處理方法的PLS交叉驗證結果
注:表2中P1、P2、P3分別代表臍橙果蒂向上、果蒂水平、果蒂向下位置獲取的透射光譜,(P1+P2+P3)/3代表P1、P2、P3的平均光譜,0.15P1+0.8P2+0.05P3代表P1、P2、P3的加權光譜。
Note: P1, P2 and P3 represent the transmission spectra of navel orange pedicle upward, pedicle horizontal placed and pedicle downward respectively; (P1+P2+P3)/3 represents the average spectra of P1, P2 and P3; 0.15P1+0.8P2+0.05P3 represents the weighted spectra of P1, P2 and P3.

表3 基于BiPLS的特征波段優選結果
從表3中可以看出,基于P5光譜的波段優選效果最佳,保留的變量數為170,RMSECV為0.390。基于P2光譜的波段優選效果與基于P5光譜的結果很接近,保留的變量數為180,RMSECV為0.393。基于P4光譜的波段優選效果次之,RMSECV為0.458,但保留的變量數為308,數量較多。基于P3光譜的波段優選效果最差,保留的變量數為114,RMSECV為0.837,這可能是由于果蒂部位的皮較厚(見表1),且果蒂的存在對光的穿透形成了較大障礙,使得透射光譜的信噪比較低所致。
在對P1、P2、P3、P4、P5光譜優選波段的基礎上,分別利用CARS算法挑選特征變量并建立PLS模型,其中CARS運行次數均為20次,統計最優結果如表4所示:
表4中,基于P5光譜建立的PLS模型最優,校正相關系數為0.914,校正均方根誤差為0.382,預測相關系數為0.928,預測均方根誤差為0.383。但該模型是通過果蒂向上、水平、向下3個位置加權透射光譜建立的,生產中需利用特殊裝置進行定位,在線檢測較難實現。基于P4光譜建立的PLS模型也取得了較好的預測結果,預測相關系數為0.911,預測均方根誤差為0.420。該模型只利用了果蒂向上、果蒂水平和果蒂向下3個位置光譜的平均光譜建模,而實際應用時可以通過翻滾樣品獲取多次光譜的平均光譜建模,這在生產中是容易實現的。在P1、P2、P3位置各自透射光譜建立的PLS模型中,基于P2位置光譜建立的PLS模型最優,校正相關系數為0.914,校正均方根誤差為0.380,預測相關系數為0.924,預測均方根誤差為0.404。若在線檢測時自定心裝置能將臍橙位置調整為果蒂水平,則檢測效果較好,但部分臍橙樣品的橫徑與縱徑相差不大(見表1),果形為類球形,目前生產應用中的自定心裝置還無法自動將臍橙果蒂全部調整為水平位置,因此無法達到預期效果,存在在線檢測部位與建模時采集光譜部位不一致的情況,影響檢測準確性。基于P3位置光譜建立的PLS模型效果最差,校正相關系數為0.546,校正均方根誤差為0.794,預測相關系數為0.586,預測均方根誤差為0.799。該模型是通過果蒂向下位置透射光譜建立的,在本研究中采用的光源布置下,果蒂向下時果蒂與信號接收探頭正對,極大阻礙了光的穿透,因此該位置獲得的信號的信噪比較低,是影響臍橙SSC檢測準確性的主要原因。

表4 基于CARS的PLS建模及預測結果
為了提高利用Vis-NIR透射光譜在線檢測臍橙內部物質含量的準確性,該文利用特制的可見-近紅外透射光譜測量裝置采集了福本臍橙果蒂向上、水平、向下3個位置的透射光譜進行試驗研究。
1)在果蒂向上、水平、向下3個位置各自透射光譜建立的PLS模型中,基于果蒂水平放置時的透射光譜建立的PLS模型最優,校正相關系數為0.914,校正均方根誤差為0.380,預測相關系數為0.924,預測均方根誤差為0.404。
2)基于果蒂向上、水平、向下3個位置平均透射光譜和加權透射光譜建立的PLS模型均取得了較好的預測結果,預測相關系數均大于0.91,預測均方根誤差均小于0.43。
今后將進一步改進和優化試驗裝置,提高臍橙SSC在線檢測的準確性。
[1] Magwaza L S, Opara U L, Nieuwoudt H, et al. NIR spectroscopy applications for internal and external quality analysis of citrus fruit: A review[J]. Food and Bioprocess Technology, 2012, 5: 425-444.
[2] Xie L J, Wang A C, Xu H R, et al. Applications of near-infrared systems for quality evaluation of fruits: A-review[J]. Transactions of the ASABE, 2016, 59(2): 399-419.
[3] Nicolai B M, Defraeye T, Ketelaere B D, et al. Nondestructive measurement of fruit and vegetable quality[J]. Annual Review of Food Science and Technology, 2014, 5: 285-312.
[4] Magwaza L S, Opara U L, Nieuwoudt H, et al. NIR spectroscopy applications for internal and external quality analysis of citrus fruit-A review [J]. Food and Bioprocess Technology, 2012, 5: 425-444.
[5] Wang H L, Peng J Y, Xie C Q, et al. Fruit quality evaluation using spectroscopy technology: A review [J]. Sensors, 2015, 15: 11889-11927.
[6] Yuan L M, Cai J R, Sun L, et al. Nondestructive measurement of soluble solids content in apples by a portable fruit analyzer [J]. Food Analytical Methods, 2016, 9: 785-794.
[7] Fan S X, Guo Z M, Zhang B H, et al. Using Vis/NIR diffuse transmittance spectroscopy and multivariate analysis to predicate soluble solids content of apple [J]. Food Analytical Methods, 2016, 9: 1333-1343.
[8] Luo X, Ye Z Z, Xu H R, et al. Robustness improvement of NIR-based determination of soluble solids in apple fruit by local calibration [J]. Postharvest Biology and Technology, 2018, 139: 82-90.
[9] 李龍,彭彥昆,李永玉,等. 蘋果內外品質在線無損檢測分級系統設計與試驗[J]. 農業工程學報, 2018, 34(9): 267-275. Li Long, Peng Yankun, Li Yongyu, et al. Design and experiment on grading system for online non-destructive detection of internal and external quality of apple[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 267-275. (in Chinese with English abstract)
[10] 劉燕德,吳明明,孫旭東,等. 黃桃表面缺陷和可溶性固形物光譜同時在線檢測[J]. 農業工程學報, 2016, 32(6): 289-295. Liu Yande, Wu Mingming, Sun Xudong, et al. Simultaneous detection of surface deficiency and soluble solids content for amygdalus persica by online visible-near infrared transmittance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 289-295. (in Chinese with English abstract)
[11] Nascimento P M, Carvalho L C, Junior L C, et al. Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) [J]. Postharvest Biology and Technology, 2016, 111: 345-351.
[12] 介鄧飛,陳猛,謝麗娟,等. 適宜西瓜檢測部位提高近紅外光譜糖度預測模型精度[J]. 農業工程學報,2014, 30(9): 229-234. Jie Dengfei, Chen Meng, Xie Lijuan, et al. Improving precision of soluble solid content predictive model by adopting suitable detective position of watermelon based on near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 229-234. (in Chinese with English abstract)
[13] 錢曼,黃文倩,王慶艷,等. 西瓜檢測部位差異對近紅外光譜可溶性固形物預測模型的影響[J]. 光譜學與光譜分析, 2016, 36(6): 1700-1705. Qian Man, Huang Wenqian, Wang Qingyan, et al. Assessment of influence detective position variability on precision of near infrared models for soluble solid content of watermelon [J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1700-1705. (in Chinese with English abstract)
[14] 樊書祥,黃文倩,李江波,等. LS-SVM 的梨可溶性固形物近紅外光譜檢測的特征波長篩選[J]. 光譜學與光譜分析,2014, 34(8): 2089-2093. Fan Shuxiang, Huang Wenqian, Li Jiangbo, et al. Characteristic wavelengths selection of soluble solids content of pear based on NIR spectral and LS-SVM[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2089-2093. (in Chinese with English abstract)
[15] Sun X D, Liu Y D, Li Y F, et al. Simultaneous measurement of brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy [J]. Postharvest Biology and Technology, 2016, 116: 80-87.
[16] Jamshidi B, Minaei S, Mohajerani E, et al. Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of[J]. Computers and Electronics in Agriculture, 2012, 85: 64-69.
[17] Ncama K, Opara U L, Tesfay S Z, et al. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of() and() [J]. Journal of Food Engineering, 2017, 193: 86-94.
[18] Peiris K, Kays S. Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers implications for the development and use of NIR spectrometric techniques [J]. HortScience, 1999, 34(1): 114-117.
[19] 劉燕德,施宇,蔡麗君,等. 基于CARS算法的臍橙可溶性固形物近紅外在線檢測[J]. 農業機械學報, 2013, 44(9): 138-144. Liu Yande, Shi Yu, Cai Lijun, et al. On-line NIR detection model optimization of soluble solids content in navel orange based on CARS [J]. Transactions of Chinese Society for Agricultural Machinery, 2013, 44(9): 138-144. (in Chinese with English abstract)
[20] 劉燕德,胡軍,歐陽玉平,等. 贛南臍橙可溶性固形物近紅外光譜在線無損檢測[J]. 廣東農業科學, 2016, 43(9): 105-111. Liu Yande, Hu Jun, Ouyang Yuping, et al. Online detection of soluble solids content forby visible-near infrared diffuse transmission spectroscopy[J]. Guangdong Agricultural Sciences, 2016, 43(9): 105-111. (in Chinese with English abstract)
[21] Fraser D G, Jordan R B, Kunnemeyer R, et al. Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy [J]. Postharvest Biology and Technology, 2003, 27: 185-196.
[22] 孫通,莫欣欣,劉木華. 果皮對臍橙可溶性固形物可見/近紅外檢測精度的影響[J]. 光譜學與光譜分析, 2018, 38(5): 1406-1411. Sun Tong, Mo Xinxin, Liu Muhua. Effect of pericarp on prediction accuracy of soluble solid content in navel oranges by visible/near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1406-1411. (in Chinese with English abstract)
[23] 許文麗,孫通,吳文強,等. 臍橙放置位置對近紅外光譜檢測結果的影響[J]. 光譜學與光譜分析, 2012, 32(11): 3002-3005. Xu Wenli, Sun Tong, Wu Wenqiang, et al. Near-infrared spectrum detection result influenced by navel oranges placement position [J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3002-3005. (in Chinese with English abstract)
[24] Gomez A H, He Y, Pereira A G. Non-destructive measurement of acidity, soluble solids and firmness ofusing Vis/NIR spectroscopy techniques [J]. Journal of Food Engineering, 2006, 77: 313-319.
[25] Golic M, Walsh K, Lawson P. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature [J]. Applied Spectroscopy, 2003, 57: 139-145.
[26] Magwaza L S, Opara U L, Terry L A, et al. Evaluation of fourier transform-NIR spectroscopy for integrated external and internal quality assessment of[J]. Journal of Food Composition and Analysis, 2013, 31: 144-154.
[27] Leardi R, Norgaard L. Sequential application of backward interval partial least squares and genetic of relevant spectral regions [J]. Journal of Chemometrics, 2004, 18: 486-497.
[28] Zhou X B, Zhao J W, Li Y X. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC ofbased on BiPLS and FiPLS models [J]. Vibrational Spectroscopy, 2007, 44: 220-227.
[29] Fan S X, Zhang B H, Li J B, et al. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple [J]. Biosystems Engineering, 2016, 143: 9-19.
[30] Li H D, Liang Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration [J]. Analytica Chimica Acta, 2009, 648: 77-84.
[31] Dhanoa M S, Lister S J, Sanderson R, et al. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra [J]. Journal of Near Infrared Spectroscopy, 1994, 2: 43-47.
Detecting soluble solids content of navel orange based on transmission spectrum of tetragonal symmetric light source
Song Jie, Li Guanglin※, Yang Xiaodong, Zhang Xin, Liu Xuwen
(,,400715,)
Navel orange is a very popular fruit in China, which is mainly cultivated along the Yangtze River. Navel oranges are classified into different grades based on external quality and internal quality before they are sold. Soluble solids content is one of the main indices for evaluating the internal quality of navel orange. Therefore, it is very important to improve the detection accuracy of soluble solids content in production. So far, visible and near infrared spectroscopy (Vis-NIR) is one of the most widely used and effective techniques in internal quality assessment of fruits. In this study, 199 Fukumoto navel oranges were taken as experimental samples. The transmission spectra of navel oranges of three positions including pedicle upwards (P1), pedicle horizontal (P2) and pedicle downward (P3) were acquired by using a special visible and near infrared transmission spectrum measurement system designed by ourselves. The average spectra (P4) and weighted spectra (P5) of P1, P2 and P3 were calculated. The transmission spectra, including P1, P2, P3, P4 and P5 were preprocessed by multivariate scattering correction, standard normal variate transformation, first derivative and second derivative respectively. The best pretreatment results were obtained based on first derivative after comparative study. Then the spectra data preprocessed by first derivative were divided into 30 to 50 intervals with step length of 5, and backward interval partial least squares was used to select the optimal band combination. Good results observed when P1, P2, P3, P4 and P5 were divided into 35, 40, 30, 35 and 40 intervals, in which 161, 180, 114, 308 and 170 variables were retained. On this basis, competitive adaptive re-weighted sampling (CARS) was used to select feature variables. After running CARS for 20 times in each selection, 24, 23, 18, 39 and 22 variables were kept respectively. Finally, Five PLS models were established, including P1-PLS, P2-PLS, P3-PLS, P4-PLS and P5-PLS. Among the P1-PLS, P2-PLS and P3-PLS models, P2-PLS model was the best one, as the value of correlation coefficients of prediction was 0.924 and the value of root mean square error of predictionwas 0.404. This model can be realized by adjusting the navel oranges to pedicle horizontal in modeling. P4-PLS model and P5-PLS model had achieved good prediction results, as the value of correlation coefficients of prediction was higher than 0.91 and the value of root mean square error of prediction was lower than 0.43. P4-PLS model was based on the average spectra of P1, P2 and P3, and had potential to be realized by rolling the navel oranges in actual application. However, P5-PLS model was based on weighted spectra of P1, P2 and P3, which was difficult to realize in on-line detection. This study can provide a reference for the development of on-line detection equipment for the assessment of internal content of substances in navel orange.
fruit; spectrum analysis; models; navel orange; tetragonal symmetric light source; transmittance; soluble solids content
10.11975/j.issn.1002-6819.2019.10.034
S233.5; O657.33
A
1002-6819(2019)-10-0267-07
2018-12-27
2019-04-13
重慶市科委重點項目(cstc2018jszx-cyzdx0051)、中央高校基本科研業務費重點項目(XDJK2016B026)
宋 杰,講師,博士生,主要從事智能控制與檢測技術研究。Email:sj2008@swu.edu.cn
李光林,教授,博士生導師,主要從事傳感器與智能檢測技術研究。Email:liguanglin@swu.edu.cn
宋 杰,李光林,楊曉東,張 信,劉旭文. 基于四方對稱光源透射光譜的臍橙可溶性固形物檢測[J]. 農業工程學報,2019,35(10):267-273. doi:10.11975/j.issn.1002-6819.2019.10.034 http://www.tcsae.org
Song Jie, Li Guanglin, Yang Xiaodong, Zhang Xin, Liu Xuwen.Detecting soluble solids content of navel orange based on transmission spectrum of tetragonal symmetric light source[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 267-273. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.034 http://www.tcsae.org