999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

柑橘潰瘍病相關(guān)基因CsPGIP的克隆與表達

2019-03-18 09:00:54胡安華祁靜靜張慶雯陳善春鄒修平許蘭珍彭愛紅雷天剛姚利曉龍琴何永睿李強
中國農(nóng)業(yè)科學(xué) 2019年4期

胡安華,祁靜靜,張慶雯,陳善春,鄒修平,許蘭珍,彭愛紅,雷天剛,姚利曉,龍琴,何永睿,李強

?

柑橘潰瘍病相關(guān)基因的克隆與表達

胡安華,祁靜靜,張慶雯,陳善春,鄒修平,許蘭珍,彭愛紅,雷天剛,姚利曉,龍琴,何永睿,李強

(西南大學(xué)/中國農(nóng)業(yè)科學(xué)院柑桔研究所,重慶 400712)

【目的】克隆并分析其表達特性,轉(zhuǎn)化柑橘得到超表達轉(zhuǎn)基因株系,并進行柑橘潰瘍病抗性評價,為柑橘潰瘍病分子育種提供理論依據(jù)。【方法】從晚錦橙和四季橘中克隆柑橘,使用Mega6進行多序列比對并構(gòu)建系統(tǒng)發(fā)育樹;采用在線軟件BaCelLo和SignalP 4.0進行亞細胞定位和信號肽預(yù)測并用GFP瞬時表達確定CsPGIP在細胞內(nèi)的定位;利用實時熒光定量PCR(qRT-PCR)比較接種潰瘍病菌前后高感品種和高抗品種中柑橘的表達特性,分析潰瘍病菌侵染與表達的相關(guān)性;農(nóng)桿菌介導(dǎo)遺傳轉(zhuǎn)化晚錦橙,采用GUS染色初篩、PCR鑒定和qRT-PCR相結(jié)合的方法鑒定超表達轉(zhuǎn)基因株系;觀察轉(zhuǎn)基因和野生型株系表型變化,分析其株高、葉片表型;離體針刺法對超表達轉(zhuǎn)基因株系和野生型株系進行柑橘潰瘍病抗性評價,統(tǒng)計病斑面積和病情指數(shù),分析表達對柑橘抗、感潰瘍病的影響。【結(jié)果】晚錦橙和四季橘均編碼328個氨基酸,與已報道的柑橘中的同源性高達99.39%,都包含2個基因典型的LRR結(jié)構(gòu)域(LRR_1和LRR_2);構(gòu)建系統(tǒng)進化樹發(fā)現(xiàn)甜橙中的CsPGIP與葡萄中的PGIP(GSVIVT01033370001)遺傳距離最近,相似度達到62.97%,推測CsPGIP與葡萄中的PGIP具有類似的抗病效果。亞細胞定位和信號肽預(yù)測結(jié)果表明CsPGIP屬于分泌蛋白,GFP洋蔥瞬時表達證明柑橘CsPGIP定位在細胞膜和細胞壁,與預(yù)測結(jié)果一致。高感品種晚錦橙和高抗品種四季橘接種潰瘍病菌后的表達特性不同,在高感品種中表達顯著下調(diào),而高抗品種中表達顯著上調(diào)且維持在較高水平,推測與柑橘潰瘍病的抗性相關(guān)。構(gòu)建超表達載體并轉(zhuǎn)化晚錦橙,通過PCR鑒定和qRT-PCR確定其中9個(OE1、OE3、OE4、OE5、OE6、OE9、OE10、OE12和OE14)為超表達陽性株系。通過對轉(zhuǎn)基因株系的表型觀察發(fā)現(xiàn)OE3、OE14株系表型與野生型株系相比差異明顯,植株表現(xiàn)為較矮小,其中OE14出現(xiàn)葉片卷曲、增厚的表型變化。對超表達轉(zhuǎn)基因株系(8個株系)進行離體抗?jié)儾≡u價,結(jié)果顯示超表達轉(zhuǎn)基因株系可以使柑橘潰瘍病病斑面積降至野生型的24.11%—83.88%,其中OE1株系的病斑面積最小;從病情指數(shù)來看,除OE3株系外,其余株系的病情指數(shù)均比野生型顯著下降(為野生型的23.12%—75.49%),其中OE1下降最顯著,綜上結(jié)果可知超表達可以有效抑制柑橘潰瘍病菌的生長?!窘Y(jié)論】是柑橘響應(yīng)潰瘍病菌侵染的重要基因,可抑制或減輕柑橘潰瘍病的發(fā)病程度,在柑橘抗?jié)儾C理研究方面具有較大的應(yīng)用價值,也可作為柑橘抗?jié)儾》肿佑N的一個候選基因。

柑橘潰瘍??;多聚半乳糖醛酸酶抑制蛋白;;超表達;潰瘍病抗性

0 引言

【研究意義】柑橘是我國南方最重要的果樹作物,其中柑橘潰瘍?。╟itrus bacterial canker,CBC)是影響柑橘產(chǎn)業(yè)發(fā)展最為嚴重的病害之一。柑橘潰瘍病是由地毯黃單胞柑橘致病變種(subsp.,)引起的世界性檢疫病害[1-3]。目前為控制柑橘潰瘍病危害通常采取化學(xué)防治為主,生物防治為輔的綜合防治策略[4]。由于以上防治措施對環(huán)境不友好,需要投入大量的人力、物力,因此培育抗病新品種是減少柑橘潰瘍病危害的根本途徑。近年來日趨成熟的分子育種技術(shù)具有效率高、周期短、可對性狀進行定向改良等優(yōu)點,愈來愈受到關(guān)注。通過分子育種挖掘潰瘍病相關(guān)的候選基因?qū)τ诟涕佼a(chǎn)業(yè)的發(fā)展具有重要意義?!厩叭搜芯窟M展】多聚半乳糖醛酸酶抑制蛋白(polygalacturonase inhibitor protein,PGIP)基因是一個常用的抗病基因,陳波等通過挖掘、分析柑橘中的(登錄號:BAA31841.1)編碼蛋白質(zhì)序列,證明是一個編碼327個氨基酸并包含兩個富含亮氨酸重復(fù)序列(leucine-rich repeat,LRR)LRR-2、LRR-1的基因[5]。LRR結(jié)構(gòu)域在植物生長發(fā)育和抗病反應(yīng)等方面發(fā)揮著重要作用[6],與識別病原體的特異性有一定關(guān)系,且決定與配體結(jié)合的專一性[7],PGIP通過抑制病原菌多聚半乳糖醛酸酶(polygalacturonase,PGs)的活性防止病原菌侵染植物組織[8-15]。大量的研究證明PGIP可提高植物對真菌病害的抗性,例如棉花[16]、煙草[9,17-18]、小麥[19]、擬南芥[8,20]、谷子[21-22]等。但是越來越多的研究發(fā)現(xiàn)PGIP在抗細菌病方面也發(fā)揮重要的作用。組成型表達梨后發(fā)現(xiàn)PcPGIP對細菌葉緣焦枯菌()有明顯的抗性[23];Hwang等在煙草和結(jié)球甘藍中轉(zhuǎn)入蕪菁的后,發(fā)現(xiàn)該基因增強了對細菌性病害軟腐病菌()的抗性[14];青枯菌()中PGs的活性可被番茄莖中提取的PGIP強烈抑制[24];紋枯病菌()中PGs活性可以被水稻的原核表達產(chǎn)物抑制[25];FENG等[26]的研究則發(fā)現(xiàn)超表達可增強水稻對條斑病菌()的抗性,而抑制表達使水稻對條斑病更加敏感?!颈狙芯壳腥朦c】前期轉(zhuǎn)錄組研究發(fā)現(xiàn),潰瘍病高感品種晚錦橙()和高抗品種四季橘()在感染潰瘍病菌前后表達差異顯著,推測可能與柑橘潰瘍病的抗性相關(guān)?!緮M解決的關(guān)鍵問題】以柑橘潰瘍病抗性品種四季橘和感性品種晚錦橙為材料,通過生物信息學(xué)分析、亞細胞定位、表達分析和轉(zhuǎn)基因功能驗證等研究,探索與柑橘潰瘍病抗、感性的關(guān)系,為柑橘抗?jié)儾》肿佑N提供理論依據(jù)。

1 材料與方法

試驗于2016年12月至2018年8月在西南大學(xué)/中國農(nóng)業(yè)科學(xué)院柑桔研究所國家柑桔工程技術(shù)研究中心完成。

1.1 植物材料與病原菌

選取4年生晚錦橙和四季橘葉片(完全展開的3個月葉齡的春稍葉片)、2年生資陽香橙()砧木為供試材料。材料取自西南大學(xué)溫網(wǎng)室和國家柑桔品種改良中心育種圃(19° 51′ N,106° 37′ E)。晚錦橙種子取自成熟果實,消毒后無菌條件下播種于MS培養(yǎng)基,3周后取上胚軸切成1 cm莖段作為轉(zhuǎn)化外植體;潰瘍病菌是由西南大學(xué)柑桔研究所保存的亞洲種A株系。

1.2 CsPGIP的克隆與分析

晚錦橙和四季橘RNA提取采用RNA快速提取試劑盒(Aidlab),并反轉(zhuǎn)錄為cDNA(TaKaRa);根據(jù)Phytozome甜橙基因組[27]中基因序列(ID: orange1.1g020203m)設(shè)計特異引物OE-CsPGIP-f/r(表1)并分別以晚錦橙和四季橘cDNA為模板PCR擴增;PCR產(chǎn)物連接pGEM-T easy載體(Promega)并轉(zhuǎn)化感受態(tài)菌株DH5(TaKaRa),陽性克隆委托擎科生物有限公司測序;利用Mega6[28]進行氨基酸多序列比對分析并繪制NJ系統(tǒng)發(fā)育樹。

1.3 CsPGIP的亞細胞定位

利用BaCelLo[29]和SignalP4.0[30]進行CsPGIP的亞細胞定位和信號肽預(yù)測;根據(jù)序列設(shè)計不含終止密碼子的特異引物SCL-CsPGIP-f/r(表1)并以晚錦橙cDNA為模板進行PCR擴增,產(chǎn)物與pSAT6- mGFP-N1載體連接,構(gòu)建CsPGIP::mGFP融合基因,再將融合基因連接到pLGN-2x35s載體,最終得到pLGN::CsPGIP::mGFP載體;將含有pLGN::CsPGIP:: mGFP載體和pLGN::mGFP載體的EHA105農(nóng)桿菌(OD=0.1)注射洋蔥下表皮,28℃暗培養(yǎng)36 h,制片并用熒光顯微鏡(OLYMPUS:BX51)觀察明、暗視野下的表達情況。

下劃線標注的為酶切位點The enzyme sites are marked with underline

1.4 柑橘潰瘍病菌對CsPGIP的誘導(dǎo)表達分析

將高感品種晚錦橙和高抗品種四季橘葉片用自來水清洗干凈并用75%的乙醇擦拭消毒,無菌水沖凈后置于無菌培養(yǎng)皿。將OD600=0.5的潰瘍病菌菌懸液注射到晚錦橙和四季橘葉片下表皮,對照組注射無菌LB液體培養(yǎng)基,于28℃光照培養(yǎng)。分別于0、12、24、36、48 h取樣,切取葉片的接種部位提取總RNA并反轉(zhuǎn)錄。根據(jù)基因特異性區(qū)域和柑橘內(nèi)參基因設(shè)計定量PCR引物qPCR-CsPGIP-f/r and qPCR-Actin-f/r(表1)。利用實時熒光定量PCR(quantitative real-time PCR,qRT-PCR)分析的相對表達量。每個處理進行3次生物學(xué)重復(fù)和3次技術(shù)重復(fù)。

1.5 CsPGIP超表達載體構(gòu)建與轉(zhuǎn)化

將克隆的具有I和I酶切位點的片段和pLGNe-2×35S-MCS-nos超表達載體用I和I雙酶切,酶切后的基因片段和載體片段連接構(gòu)建pLGNe-CsPGIP-2×35S-MCS-nos超表達載體并轉(zhuǎn)化農(nóng)桿菌(EHA105)。柑橘轉(zhuǎn)化參照PENG等[31]的方法。含有重組質(zhì)粒的農(nóng)桿菌于LB液體培養(yǎng)基28℃培養(yǎng)至OD600=0.5,侵染晚錦橙外植體(1 cm上胚軸莖段)15 min,外植體用滅菌濾紙擦干后均勻擺放到共培養(yǎng)基(含2 mg·L-1IP、1 mg·L-1IAA和2,4-D、0.1 mg·L-1AS的MS培養(yǎng)基)于28℃暗培養(yǎng),72 h后轉(zhuǎn)移到篩選培養(yǎng)基(含2 mg·L-1BA、1 mg·L-1IAA、50 mg·L-1Kana的MS培養(yǎng)基)于28℃暗培養(yǎng),7 d后轉(zhuǎn)移到28℃光照培養(yǎng)。

1.6 轉(zhuǎn)基因株系鑒定

光照培養(yǎng)約50 d后,待不定芽生長到1 cm左右,切取少量芽進行GUS染色,顯色為藍色的芽初步認定為擬轉(zhuǎn)化芽。初篩得到的擬轉(zhuǎn)化芽嫁接到砧木,待長大后取其葉片提取基因組DNA,以此為模板用特異基因驗證引物OE-f(35s)/OE-r(CsPGIP)(表1)進行PCR鑒定。陽性轉(zhuǎn)基因株系提取RNA并反轉(zhuǎn)錄為cDNA,利用qRT-PCR分析各株系中的表達量。

1.7 轉(zhuǎn)基因株系的抗性評價

轉(zhuǎn)基因株系的抗病性評價參照PENG等[32]的方法進行。選取完全展開的3個月葉齡轉(zhuǎn)基因株系及野生型晚錦橙葉片,進行離體抗性評價。用接種針在每片葉片的背面刺4—6組孔,每組6個,每個針孔接種潰瘍病菌1 μL(OD600=0.5),同時對照組接種無菌LB培養(yǎng)基。28℃光照培養(yǎng)10 d,拍照記錄病斑。用軟件Image J V1.47(National Institutes of Health,Bethesda,MD)統(tǒng)計病斑面積(lesion area,LA,mm2)。按照病斑面積大小將病情分為8個級別,用字母LA表示病斑面積,0級(LA≤0.5 mm2),1級(0.5 mm2<LA≤1.0 mm2),2級(1.0 mm2<LA≤1.5 mm2),3級(1.5 mm2<LA≤2.0 mm2),4級(2.0 mm2<LA≤2.5 mm2),5級(2.5 mm2<LA≤3.0 mm2),6級(3.0 mm2<LA≤3.5 mm2),7級(LA>3.5 mm2)。根據(jù)以下公式計算病情指數(shù)(disease index,DI):DI=100×Σ(各級病斑數(shù)×相應(yīng)級數(shù)值)/(病斑總數(shù)×最大級數(shù))。

1.8 qRT-PCR與統(tǒng)計分析

相對表達量采用2-ΔΔCt法(ΔCt = CtCsPGIP-CtActin)計算,使用Excel進行數(shù)據(jù)統(tǒng)計分析并繪圖。<0.05表示差異顯著,<0.01表示差異極顯著。

2 結(jié)果

2.1 CsPGIP生物信息學(xué)分析

晚錦橙和四季橘的Cs編碼的CsPGIP均含有328個氨基酸,與已報道柑橘PGIP(BAA31841.1)[5]同源性為99.39%,3個基因編碼的PGIP均含有PGIP關(guān)鍵結(jié)構(gòu)域LRR_1和LRR_2,屬于同源基因(圖1)。

通過對CsPGIP與其他8個物種(擬南芥、高粱、水稻、亞麻屬、苜蓿、楊樹、谷子和葡萄)共38條PGIP序列進行系統(tǒng)發(fā)育分析,結(jié)果顯示不同物種間PGIP序列具有很強的保守性,相同物種具有較高的相似度;單子葉和雙子葉植物單獨聚在一起,分成兩個大組;柑橘CsPGIP與葡萄PGIP(GSVIVT01033370001)遺傳距離最近,相似度達到62.97%(圖2)。

2.2 CsPGIP亞細胞定位

利用BaCelLo進行CsPGIP亞細胞定位預(yù)測,定位于細胞膜上的預(yù)測分值(2.272)顯著高于其他部位(≤1.494),CsPGIP可能定位在細胞膜上。信號肽預(yù)測結(jié)果顯示其N端有含23個氨基酸的信號肽:MSNTSLLSLFFFLCLCISPSLSD,表明CsPGIP為分泌蛋白。為驗證亞細胞定位和信號肽的預(yù)測,以柑橘與構(gòu)建融合表達載體,通過洋蔥表皮瞬時表達進行亞細胞定位,顯微觀察顯示融合蛋白定位在細胞膜和細胞壁結(jié)合部(圖3 A1-A3),進一步進行質(zhì)壁分離后觀察顯示融合蛋白在細胞膜和細胞壁中都有積累(圖3 B1-B3),而對照組定位在整個細胞中(圖3 C1-C3、D1-D3)。CsPGIP定位在細胞膜和細胞壁中的觀察結(jié)果與預(yù)測一致。

深藍色為相同氨基酸序列,淺藍色為不同的氨基酸序列,LRR_1和LRR_2為LRR結(jié)構(gòu)域

以上基因均來自Phytozome(http://www.phytozome.com/)基因組數(shù)據(jù)庫Genes in this study are all from Phytozome (http://www.phytozome.com/)

A1:明視野觀察CsPGIP-GFP融合蛋白Image of CsPGIP-GFP under bright field;A2:暗視野觀察CsPGIP-GFP融合蛋白Image of CsPGIP-GFP under dark field;A3:A1、A2視野疊加Overlap of A1 and A2;B1:明視野觀察CsPGIP-GFP融合蛋白質(zhì)壁分離Image of CsPGIP-GFP under bright field (plasmolysis);B2:暗視野觀察CsPGIP-GFP融合蛋白質(zhì)壁分離Image of CsPGIP-GFP under dark field (plasmolysis);B3:B1、B2視野疊加Overlap of B1 and B2;C1:明視野觀察GFP表達Image of GFP under bright field;C2:暗視野觀察GFP表達Image of GFP under dark field;C3:C1、C2視野疊加Overlap of C1 and C2;D1:明視野觀察GFP質(zhì)壁分離GFP of plasmolysis under bright field;D2:暗視野觀察GFP質(zhì)壁分離GFP of plasmolysis under dark field;D3:D1、D2視野疊加Overlap of D1 and D2;標尺Scale:100 μm

2.3 柑橘潰瘍病菌對CsPGIP的誘導(dǎo)表達分析

實時熒光定量PCR結(jié)果分析顯示柑橘在5個時間點(0、12、24、36和48 h)表達水平存在不同程度的差異(圖4),其中高感品種晚錦橙在接種潰瘍病菌12 h后的表達出現(xiàn)顯著下調(diào)并維持在較低的水平。而高抗品種四季橘在接種潰瘍病菌后表達出現(xiàn)不同程度上調(diào),在12 h時表達量最高,為0 h的2.91倍,12 h后仍維持在較高水平。結(jié)果表明表達與潰瘍病菌的侵染具有密切關(guān)系,經(jīng)潰瘍病菌誘導(dǎo)而顯著上調(diào)可能是四季橘抗?jié)儾〉脑蛑弧?/p>

2.4 轉(zhuǎn)基因株系的鑒定及CsPGIP表達分析

經(jīng)GUS染色初篩(結(jié)果未顯示)結(jié)合PCR鑒定,共獲得9個轉(zhuǎn)基因株系,分別為OE1、OE3、OE4、OE5、OE6、OE9、OE10、OE12和OE14(圖5-A)。以轉(zhuǎn)基因株系和野生型對照同期葉片提取RNA,qRT-PCR進行表達量測定,相對于野生型對照,以上9個株系表達量均出現(xiàn)不同程度的上調(diào)表達,其中OE10上調(diào)表達最高(圖5-B)。

不同小寫字母表示差異顯著(P<0.05)Different lowercases indicate significant difference (P<0.05)

A:CsPGIP轉(zhuǎn)基因株系的PCR鑒定PCR amplification of CsPGIP in over-expression transgenic lines;B:轉(zhuǎn)基因株系中CsPGIP的相對表達量檢測The relative expression level of CsPGIP in over-expression transgenic lines。 M:分子量標準Marker;OE1—OE14:Gus初篩的轉(zhuǎn)基因材料lines verified from Gus staining;WT:野生型wild-type;陽性株系特異擴增條帶為1 530 bp PCR product size of positive lines is 1 530 bp

2.5 轉(zhuǎn)基因株系的表型分析

觀察分析9株轉(zhuǎn)基因株系表型,3個樹齡一年的株系OE1、OE3和OE4中,OE3與野生型對照差異明顯,植株較矮小(圖6-A、6-D)。7個樹齡6個月的株系OE5、OE6、OE9、OE10、OE12和OE14與野生型比較,OE14株系出現(xiàn)了異常,植株矮?。▓D6-B、6-E)、葉片卷曲、增厚(圖6-C)。

A:樹齡1年的轉(zhuǎn)基因株系(OE1、OE3、OE4)和野生型對照(WT1)植株The phenotype of 1-year-old transgenic lines (OE1, OE3, OE4) and the wild-type control (WT1);B:樹齡6個月的轉(zhuǎn)基因株系(OE5、OE6、OE9、OE10、OE12、OE14)和野生型對照(WT2)植株P(guān)henotype of 6-month-old transgenic lines (OE5, OE6, OE9, OE10, OE12, OE14) and the wild-type control (WT2);C:野生型對照WT2和轉(zhuǎn)基因株系OE14的葉片Leaves of WT2 and OE14;D:樹齡1年的轉(zhuǎn)基因株系(OE1、OE3、OE4)和野生型對照(WT1)的株高(測量方法:從嫁接口到頂梢的距離)Height of 1-year-old transgenic lines (OE1, OE3, OE4) and the wild-type control (measurement method: distance from the graft to the top tip);E:樹齡6個月的轉(zhuǎn)基因株系(OE5、OE6、OE9、OE10、OE12、OE14)和野生型對照(WT2)的株高Height of 6-month-old transgenic lines (OE5, OE6, OE9, OE10, OE12, OE14) and the wild-type control

2.6 轉(zhuǎn)基因株系的潰瘍病抗性評價

對8個轉(zhuǎn)基因株系(OE1、OE3、OE4、OE5、OE6、OE9、OE10和OE12)進行了抗病性評價。采用針刺法離體接種潰瘍病菌,以接種LB培養(yǎng)基的葉片作為對照。10 d后,接種LB培養(yǎng)基的葉片均未發(fā)?。▓D7-A),而接種潰瘍病菌的葉片均不同程度發(fā)病,病斑大小存在一定的差異(圖7-B);經(jīng)過統(tǒng)計分析,轉(zhuǎn)基因株系病斑面積顯著小于野生型對照(圖7-C),僅為野生型對照病斑面積的24.11%—83.88%;轉(zhuǎn)基因株系病情指數(shù)僅為野生型對照的23.12%—86.52%(圖7-D)。從轉(zhuǎn)基因株系接種潰瘍病菌抗性評價結(jié)果得出株系OE1、OE4、OE5、OE6、OE9、OE10和OE12可顯著減小葉片潰瘍病病情指數(shù),其中OE1株系對柑橘潰瘍病抗性得到極顯著提高。

3 討論

植物細胞壁是抵御病菌入侵的第一道防線,病原細菌和真菌必須通過植物細胞壁在植物體內(nèi)建立生物營養(yǎng)感染的定殖位點后進行擴大感染[33]。PGIP是植物細胞壁產(chǎn)生的LRR類防御蛋白,能特異性的抑制病原菌分泌的PGs,從而抑制病原菌對植株的侵染。LRR基序是參與蛋白質(zhì)之間互作的結(jié)構(gòu)域[34],PGIP通過LRR基序抑制PGs的活性[35]。有研究表明PGIP在多種物種中對提高病害的抗性有顯著作用,棉花可增強植株對黃萎病和鐮孢菌枯萎病的抗性[16];過表達增強了結(jié)球甘藍對細菌性軟腐病的抗性[14];CaPGIPs在植物的抗病方面起著重要作用[36];葡萄VvPGIP1可以降低轉(zhuǎn)基因煙草對灰霉病菌的敏感性,并對病原菌的PGs有不同程度的抑制作用[17]。本研究結(jié)果表明,晚錦橙中的超量表達可增強柑橘對潰瘍病菌的抗性。

A:接種LB培養(yǎng)基的轉(zhuǎn)基因株系和野生型對照葉片Disease spots of transgenic lines and the wild-type inoculated with LB;B:接種潰瘍病菌的轉(zhuǎn)基因株系和野生型對照葉片Disease spots of transgenic lines and the wild-type inoculated with Xcc;C:接種潰瘍病菌的轉(zhuǎn)基因株系和野生型對照病斑面積Lesion area of transgenic lines and the wild-type inoculated with Xcc;D:接種潰瘍病菌的轉(zhuǎn)基因株系和野生型對照病情指數(shù)Disease index of transgenic lines and the wild-type inoculated with Xcc。WT:野生型對照wild-type control;OE1—OE12:轉(zhuǎn)基因株系transgenic lines。*表示差異顯著(P<0.05),**表示差異極顯著(P<0.01)* represents significant difference (P<0.05), ** represents extremely significant difference (P<0.01)

在潰瘍病菌的誘導(dǎo)下,在高感品種晚錦橙中下調(diào)表達而在高抗品種四季橘中顯著上調(diào)表達。晚錦橙和四季橘中的CsPGIP蛋白僅存在3個氨基酸的差異,但它們具有相同的LRR類防御蛋白特有的結(jié)構(gòu)域LRR_1和LRR_2(圖1),因而這兩種蛋白本身對病原菌的抵抗能力可能差異不大。導(dǎo)致在不同潰瘍病抗性的柑橘品種中差異表達的原因可能是調(diào)控機制的差異。柑橘抵抗?jié)儾【娜肭质且粋€復(fù)雜的調(diào)控網(wǎng)絡(luò)。潰瘍病病原菌主要的效應(yīng)因子pthA4通過III型分泌系統(tǒng)進行柑橘基因組后,與柑橘體內(nèi)的潰瘍病感病基因結(jié)合[37]。研究表明,不同潰瘍病抗性的柑橘品種中都含有,但在不同抗性的柑橘品種中存在啟動子序列的差異[31],這種啟動子序列的差異可能會引起基因表達的差異。在不同的抗、感潰瘍病柑橘品種中,雖然相同,但其轉(zhuǎn)錄后可能存在轉(zhuǎn)錄后修飾現(xiàn)象,轉(zhuǎn)錄呈現(xiàn)多態(tài)性,這種轉(zhuǎn)錄后的修飾也會導(dǎo)致在不同抗性的柑橘品種中表達的差異。因而進一步克隆晚錦橙和四季橘中的啟動子,分析啟動子序列差異;同時對不同潰瘍病抗性的柑橘品種中轉(zhuǎn)錄的結(jié)構(gòu)多態(tài)性進行研究,有望闡明在不同潰瘍病抗性的柑橘品種中差異表達的原因。

本研究對9個轉(zhuǎn)基因株系進行表型分析,發(fā)現(xiàn)僅有兩個轉(zhuǎn)基因株系出現(xiàn)了植株矮小的現(xiàn)象,其中一個株系(OE14)的葉片卷曲增厚。多個物種的已在不同的植株中進行超表達,但轉(zhuǎn)基因并未引起植株表型的差異[16-26]。本研究中轉(zhuǎn)基因植株表型變化可能是隨機整合到柑橘基因組中時引起某些基因或調(diào)控序列失活造成的。由于僅有兩個株系出現(xiàn)了表型變化且其中一株過于矮小無法進行表型相關(guān)研究,后期將會對潰瘍病抗性評價、插入位點、基因表達和細胞組織結(jié)構(gòu)進行綜合研究,以探究對植物生長發(fā)育的影響。

潰瘍病抗性評價結(jié)果顯示不同的轉(zhuǎn)基因株系可不同程度顯著減小葉片病情指數(shù),其中OE1株系對柑橘潰瘍病抗性極顯著提高且表型正常。目前對柑橘潰瘍病抗性機理尚未清楚,因而篩選出的抗?jié)儾〉霓D(zhuǎn)基因柑橘可以作為材料進一步研究的作用機理。

4 結(jié)論

CsPGIP為定位于細胞壁和細胞膜的蛋白,受潰瘍病菌誘導(dǎo)表達。的表達特性表明該基因是柑橘響應(yīng)潰瘍病侵染的重要基因,超表達該基因可以提高柑橘對潰瘍病的抗性,該基因在柑橘抗?jié)儾C理研究方面具有較大的應(yīng)用價值,可作為柑橘抗?jié)儾》肿佑N的一個候選基因。

[1] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses., 2015, 2: 15042.

[2] 賈瑞瑞, 周鵬飛, 白曉晶, 陳善春, 許蘭珍, 彭愛紅, 雷天剛, 姚利曉, 陳敏, 何永睿, 李強. 柑橘響應(yīng)潰瘍病菌轉(zhuǎn)錄因子CsBZIP40 的克隆及功能分析. 中國農(nóng)業(yè)科學(xué), 2017, 50(13): 2488-2497.

JIA R R, ZHOU P F, BAI X J, CHEN S C, XU L Z, PENG A H, LEI T G, YAO L X, CHEN M, HE Y R, LI Q. Gene cloning and expression analysis of canker-related transcription factor CsBZIP40 in citrus., 2017, 50(13): 2488-2497. (in Chinese)

[3] 楊楓, 陳傳武, 范七君, 石春梅, 謝宗周, 郭大勇, 劉繼紅. 溫度和多胺對柑橘潰瘍病發(fā)生的影響及作用機制. 中國農(nóng)業(yè)科學(xué), 2018, 51(10): 1899-1907.

YANG F, CHEN C W, FAN Q J, SHI C M, XIE Z Z, GUO D Y, LIU J H. Influence of temperature and polyamines on occurrence of citrus canker disease and underlying mechanisms., 2018, 51(10): 1899-1907. (in Chinese)

[4] 陳力, 王中康, 黃冠軍, 曹月青, 夏玉先, 殷幼平. 柑橘潰瘍病生防菌株CQBS03的鑒定及其培養(yǎng)特性研究. 中國農(nóng)業(yè)科學(xué), 2008, 41(8): 2537-2545.

CHEN L, WANG Z K, HUANG G J, CAO Y Q, XIA Y X, YIN Y P. Evaluation ofstrain CQBS03 againstpv., 2008, 41(8): 2537-2545. (in Chinese)

[5] 陳波, 羅慶華, 譚雅芹, 閆慧清. 柑橘PGIP的B細胞抗原表位分析和原核表達. 現(xiàn)代食品科技, 2018, 34(4): 18-22.

CHEN B, LUO Q H, TAN Y Q, YAN H Q. B cell epitopes analysis and prokaryotic expression of PGIP in citrus., 2018, 34(4): 18-22. (in Chinese)

[6] FREIBERG A, MACHNER M P, PFELI W, SCHUBERT W D, HEINZ D W, SECKLER R. Folding and stability of the leucine-rich repeat domain of internal in B from., 2004, 337(2): 453-461.

[7] LEHMANN P. Structure and evolution of plant disease resistance genes., 2002, 43(4): 403-414.

[8] FERRARI S, GALLETTI R, VAIRO D, GERVONE F, DE LORENZO G. Antisense expression of thegene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to., 2006, 19(8): 931-936.

[9] JOUBERT D A, KARS I, WAGEMAKERS L, BERGMANN C, KEMP G, VIVIER M A, VAN KAN J A. A polygalacturonase- inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 frominleaves without any evidence forinteraction., 2007, 20(4): 392-402.

[10] CHENG Q, CAO Y Z, PAN H X, WANG M X, HUANG M R. Isolation and characterization of two genes encoding polygalacturonase- inhibiting protein from., 2008, 35(10): 631-638.

[11] HEGEDUS D D, LI R, BUCHWALDT L, PARKIN I, WHITWILL S, COUTU C, BEKKAOUI D, RIMMER S R.possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response toinfection, wounding and defense hormone treatment., 2008, 228(2): 241-253.

[12] JANNI M, SELLA L, FAVARON F, BLECHL A E, DE LORENZO G, D’OVIDO R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen., 2008, 21(2): 171-177.

[13] DI C X, LI M, LONG F, BAI M P, LIU Y J, ZHENG X L, XU S J, XIANG Y, SUN Z L, AN L Z. Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase- inhibiting protein in., 2009, 231(1): 169-178.

[14] HWANG B H, BAE H, LIM H S, KIM K B, KIM S J, IM M H, PARK B S, KIM D S, KIM J. Overexpression of polygalacturonase- inhibiting protein 2 () of chinese cabbage (ssp.) increased resistance to the bacterial pathogenssp.., 2010, 103(3): 293-305.

[15] D’OVIDIO R, RAIOLA A, CAPODICASA C, DEVOTO A, PONTIGGIA D, ROBERTI S, GALLETTI R, CONTI E, O’SULLIVAN D, DE LORENZO G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects., 2004, 135(4): 2424-2435.

[16] LIU N N, ZHANG X Y, SUN Y, WANG P, LI X C, PEI Y K, LI F G, HOU Y X. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance toandwilts in cotton., 2017, 7: 39840.

[17] JOUBERT D A, SLAUGHTER A R, KEMP C, BECKER J V, KROOSHOF C H, BERGMANN C, BENEN C, PRETORIUS I S, WIER M A. The polygalacturonase-inhibiting protein (VvPGIPl) reducesin transgenic tobacco and differentially inhibits fungal polygalacturonases., 2006, 15(6): 687-702.

[18] BORRAS-Hidalgo O, CAPRARI C, HERNANDEZ-Estevezi, DE Lorenzo G, CERVONE F. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance againstand two oomycetes., 2012, 3: 268.

[19] WANG A Y, WEI X N, RONG W, DANG L, DU L P, QI L, XU H J, SHAOY J, ZHANG Z Y. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat., 2015, 15(3): 375-381.

[20] MANFREDINI C, SICILIA F, FERRARI S, PONTIGGIA D, SALVI G, CAPRARI C, LORITO M, DE Lorenzo G. Polygalacturonase- inhibiting protein 2 ofinhibits BcPGl, a polygalacturonase ofimportant for pathogenicity, and protects transgenic plants from infection., 2005, 67(2): 108-115.

[21] PRABHU S A, WAGENKNECHT M, MELVIN P, KUMAR B S G, VEENA M, SHAILASREE S, MOERSCHBACHER B M, KINI K R. Immuno-affinity purification ofPGIP1, a polygalacturonase inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen., 2015, 42(6): 1123-1138.

[22] PRABHU S A, KINI K R, RAJ S N, MOERSCHBACHER B M, SHETTY H S. Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew., 2012, 44(5): 415-423.

[23] AGüERO C B, URATSU S L, GREVE C, POWELL A T, LABAVITCH J M, MEREDITH C P, DANDEKAR A M. Evaluation of tolerance to Pierce’s disease andin transgenic plants ofL. expressing the pear PGIP gene., 2005, 6(1): 43-51.

[24] SCHACHT T, UNGER C, PICH A, WYDRA K. Endo- and exopolygalactuonases ofare inhibited by polygalactuonase-inhibiting protein (PGIP) activity in tomato stem extracts., 2011, 49(4): 377-387.

[25] WANG R, LU L, PAN X, HU Z, LING F, YAN Y, LIU Y, LIN Y. Functional analysis of, 2015, 87(1/2): 181-191.

[26] FENG C S, ZHANG X, WU T, YUAN B, DING X H, YAO F Y, CHU Z H. The polygalacturonase-inhibiting protein 4 (), a potential component of thelocus, confers resistance to bacterial leaf streak in rice., 2016, 243(5): 1297-1308.

[27] GOODSTEIN D M, SHU S, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: a comparative platform for green plant genomics., 2012, 40(Database issue): D1178-D1186.

[28] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: molecular evolutionary genetics analysis version 6.0., 2013, 30(12): 2725-2729.

[29] PIERLEONI A, MARTELLI P L, FARISELLI P, CASADIO R. BaCelLo: a balanced subcellular localization predictor., 2006, 22(14): e408-e416.

[30] PETERSEN T N, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 4.0: discriminating signal peptides from transmembrane regions., 2011, 8(10): 785-786.

[31] PENG A H, XU L Z, HE Y R, LEI T G, YAO L X, CHEN S C, ZOU X P. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Osbeck) with enhanced resistance to citrus canker using a Cre/site-recombination system., 2015, 123(1): 1-13.

[32] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility genepromoter in citrus., 2017, 15(12): 1509-1519.

[33] POWELL A L, VAN KAN J, TEN HAVE A, VISSER J, GREVE L C, BENNETT A B, LABAVITCH J M. Transgenic expression of pear PGIP in tomato limits fungal colonization., 2000, 13(9): 942-950.

[34] DE LORENZO G, D’OVIDIO R, CERVONE F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi., 2001, 39(1): 313-335.

[35] KOBE B, KAJAVA A V. The leucine-rich repeat as a protein recognition motif., 2001, 11(6): 725-732.

[36] WANG X J, ZHU X P, TOOLEY P, ZHANG X G. Cloning and functional analysis of three genes encoding polygalacturonase- inhibiting proteins fromand transgenicin tobacco in relation to increased resistance to two fungal pathogens., 2013, 81(4/5): 379-400.

[37] HU Y, ZHANG J L, JIA H G, SOSSO D, LI T, FROMMER W B, YANG B, WHITE F F, WANG N, JONES J B.is a disease susceptibility gene for citrus bacterial canker disease., 2014, 111(4): E521-E529.

(責(zé)任編輯 岳梅)

Cloning and Expression Analysis of the Citrus Bacterial Canker-Related Genein Citrus

HU AnHua, QI JingJing, ZHANG QingWen, CHEN ShanChun, ZOU XiuPing, XU LanZhen, PENG AiHong, LEI TianGang, YAO LiXiao, LONG Qin, HE YongRui, LI Qiang

(Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712)

【Objective】The objective of this study is to cloneand analyze its expression characteristics, constructtransgenic citrus and evaluate the resistance to citrus bacterial canker (CBC), and to provide a theoretical basis for molecular breeding of citrus bacterial canker.【Method】was annotated from the genomic databases and cloned from Wanjincheng and Calamondin. Mega6 was used for multiple sequence alignment and phylogenetic tree was constructed. Two online softwares BaCelLo and SignalP 4.0 were used for the prediction of subcellular localization and signal peptide. The predicted result was then demonstrated by GFP transient expression. The expression profile ofinduced bysubsp.() was also analyzed in Wanjincheng and Calamondin by using qRT-PCR method. The correlation betweeninfection andexpression was analyzed. Genetic transformation of Wanjincheng was conducted by-mediated method. The over-expressed lines were identified by Gus staining, PCR and qRT-PCR. The phenotypic changes of transgenic and wild-type lines were observed, plant height and leaf phenotype were analyzed.acupuncture was used to evaluate the resistance of transgenic lines and wild-type lines to citrus bacterial canker. The effect ofexpression on resistance and susceptibility to citrus bacterial canker was analyzed by statistical analysis of lesion area (LA) and disease index (DI). 【Result】Thecloned from Wanjincheng and Calamondin encodes 328 amino acids, which is 99.39% homology with the reportedfrom Clementina, and contains two typical LRR domains (LRR_1 and LRR_2). In the phylogenetic tree, the genetic distance between CsPGIP and grape PGIP (GSVIVT01033370001) was the closest, and the similarity was 62.97%. It is inferred that CsPGIP and grape PGIP have similar resistance to disease. The prediction of subcellular localization and signal peptide indicated that CsPGIP was a secretory protein, and GFP transient expression proved that CsPGIP located on cell membrane and cell wall, which was consistent with the predicted results. The expression ofin canker sensitive plant Wanjincheng and canker resistant plant Calamondin was different after inoculated with. the expression ofwas significantly down-regulated in Wanjincheng, but significantly up-regulated and maintained at a high level in Calamondin. It is speculated thatwas related to resistance to citrus bacterial canker.over-expression vector was constructed and transformed into Wanjincheng, and nineover-expression lines (OE1, OE3, OE4, OE5, OE6, OE9, OE10, OE12 and OE14) were identified asover-expression positive lines by PCR identification and qRT-PCR. Through the phenotypic observation of transgenic lines, it was found that the phenotypes of OE3 and OE14 lines were significantly different from those of wild-type lines. The plant was short, in which OE14 was also abnormal with curly property and greater thickness. Thecanker resistance of eightover-expression lines was evaluated. The results showed that the lesion area on the eightover-expression lines was smaller compared to that on the wild-type (24.11%-83.88%), and the lesion area of OE1 was the smallest. In terms of disease index, the disease index ofover-expression lines (except OE3) was significantly lower than that of wild-type (23.12%-75.49%), and the decrease of OE1 was the most significant. The above results showed that over-expression ofcould effectively inhibit the growth of citrus bacterial canker.【Conclusion】is an important gene which can inhibit or reduce the incidence of citrus bacterial canker, and has a great application value in the mechanism study of citrus resistance to bacterial canker. In the same time, it can be used as a candidate gene for molecular breeding of citrus bacterial cankerresistance.

citrus bacterial canker (CBC); polygalacturonase inhibitor protein;; over-expression; CBC resistance

10.3864/j.issn.0578-1752.2019.04.006

2018-10-13;

2018-11-26

國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)資金(CARS-26)、重慶市社會事業(yè)與民生體系保障科技創(chuàng)新專項(cstc2016shms-ztzx80001,cstc2017shms-xdny80051)、廣西科技重大專項(桂科AA18118046)

胡安華,E-mail:782497097@qq.com。 通信作者李強,E-mail:liqiang@cric.cn。通信作者何永睿,E-mail:heyongrui@cric.cn

主站蜘蛛池模板: 亚洲中文字幕23页在线| 国产在线日本| 人妻21p大胆| 亚洲AⅤ无码日韩AV无码网站| 人人爱天天做夜夜爽| 国产精品私拍99pans大尺度| 国产成人你懂的在线观看| 国产黄在线观看| 国产超薄肉色丝袜网站| 91在线国内在线播放老师| 国产原创自拍不卡第一页| 又大又硬又爽免费视频| 中文字幕在线免费看| 国产在线观看成人91| 71pao成人国产永久免费视频| 国产情精品嫩草影院88av| 日日噜噜夜夜狠狠视频| 国产精品极品美女自在线看免费一区二区| 中文字幕亚洲综久久2021| 精品91视频| 一本久道热中字伊人| 中文字幕永久在线看| 亚洲人成网站色7777| 美女国产在线| 91www在线观看| 99久久国产综合精品2023| 91色在线观看| 亚洲区第一页| 欧日韩在线不卡视频| 国产国产人在线成免费视频狼人色| 国产精品区视频中文字幕| 色综合久久久久8天国| 久久久精品无码一区二区三区| 久久77777| 好吊色国产欧美日韩免费观看| 国内精品伊人久久久久7777人| 亚洲欧美另类视频| 在线高清亚洲精品二区| 精品国产美女福到在线不卡f| 国产欧美视频在线观看| 亚洲VA中文字幕| 尤物视频一区| 久久激情影院| 国产尤物在线播放| 亚洲综合色婷婷| 国产一级在线播放| 国产免费久久精品99re丫丫一| 国产日韩精品欧美一区喷| 性69交片免费看| 日韩色图区| 中文字幕人妻无码系列第三区| 亚欧成人无码AV在线播放| 91 九色视频丝袜| 国产区免费| 国内黄色精品| 欧美中文字幕第一页线路一| 国产永久无码观看在线| 久久女人网| 久久亚洲天堂| 色香蕉影院| 四虎免费视频网站| 久久男人资源站| 欧美第二区| 亚洲人成网址| 国产美女无遮挡免费视频| 亚卅精品无码久久毛片乌克兰 | 亚洲第一精品福利| 狂欢视频在线观看不卡| 91探花在线观看国产最新| 福利一区三区| 91久久偷偷做嫩草影院精品| 最新国产成人剧情在线播放| 综合社区亚洲熟妇p| 伊人色综合久久天天| 另类欧美日韩| 国产制服丝袜91在线| 日本在线国产| 中字无码av在线电影| 日本少妇又色又爽又高潮| 亚洲国产理论片在线播放| 韩日午夜在线资源一区二区| 97精品久久久大香线焦|