999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

離散時間非線性馬爾可夫跳變系統的H∞濾波

2019-03-12 07:01:16莊繼晶
棗莊學院學報 2019年2期
關鍵詞:模態定義系統

莊繼晶

(山東科技大學數學與系統科學學院,山東青島 266590)

0 引言

近年來,關于H∞濾波問題的研究越來越受到重視.H∞濾波將魯棒控制設計中性能指標的H∞范數引入到濾波系統中,以解決系統存在的各種不確定性問題.它將噪聲看作是能量有限的隨機信號,使系統的干擾到估計誤差的閉環傳遞函數的H∞范數小于一個給定的常量γ2.相較于卡爾曼濾波,H∞濾波具有良好的魯棒性,其性能也明顯優于卡爾曼濾波.隨著研究的深入,已經有許多關于H∞濾波的研究成果,例如通過采用線性矩陣不等式(LMI)技術和Lyapunov函數方法為包括線性和非線性系統[1,2],馬爾可夫跳系統[3,4],帶時滯的系統[5,6],無偏估計系統[7,8],有限時間系統[9,10]在內的連續或離散時間系統[11,12]等等提供了許多重要的研究結果.其中,[8]中的馬爾可夫跳系統是由具有有限模態集轉換的子系統組成,并且可以在不同時間從一個模式切換到另一個模式.值得注意的是,在許多實際應用中,離散時間馬爾可夫跳躍系統可能比其連續時間系統更為貼近實際結果.而且實際系統總是存在不同程度的非線性,大多數無法僅用線性微分方程的形式描述,例如衛星導航系統、飛機的飛行狀態等必須用非線性數學模型來更好的模擬實際情況.根據我們所知,離散時間帶馬爾可夫跳的非線性系統的H∞濾波問題研究甚少,因此我們可以開展這項工作.

1 預備知識

考慮以下的離散時間非線性馬爾可夫跳變系統

x(l+1)=A(rl)x(l)+B(rl)ω(l)+g(x(l)),

(1a)

y(l)=C(rl)x(l)+D(rl)ω(l),

(1b)

z(l)=E(rl)x(l)+F(rl)ω(l),

(1c)

則上述非線性馬爾可夫跳系統(1a)-(1b)可表示為

x(l+1)=Asx(l)+Bsω(l)+g(x(l)),

(2a)

y(l)=Csx(l)+Dsω(l),

(2b)

z(l)=Esx(l)+Fsω(l),

(2c)

這里x(l)∈Rh,y(l)∈Rq,z(l)∈Rl,ω(l)∈Rp分別代表狀態矢量、量測輸出、噪聲輸入和待估計信號.As,Bs,Cs,Ds,Es,Fs均為具有適當維數的已知矩陣,g(x(l))為一個非線性函數且滿足以下約束

(3)

其中ρ為已知權矩陣且ρTρ是非奇異的.

下面我們設計如下形式的濾波器

(4a)

(4b)

(5a)

(5b)

(6a)

(6b)

下面給出一些后文中要用到的定理和引理.

定義1 考慮增廣系統(6a)-(6b),令Je:=l2([0,∞),Rp)→l2([0,∞),Rl)滿足

定義Je的H∞范數為

(7)

定義2 考慮增廣系統(6a)-(6b),若存在濾波器(4a)-(4b)滿足:

(i)對?l≥0,當ω(l)=0時,增廣系統(6a)-(6b)是均方漸進穩定的;

(ii)對給定的干擾抑制水平γ>0,?ω(l)∈l2([0,∞),Rp),ω(l)≠0有以下約束成立

(8)

則稱增廣系統(6a)-(6b)的魯棒H∞濾波問題是可解的.

引理2[13]設A,D,E,F為具有適當維數的實矩陣,P>0且F滿足FTF≤I.若存在標量ε>0滿足εI-ETPE>0,那么有

(A+DFE)TP(A+DFE)≤ATPA+ATPET(εI-ETPE)-1EPA+εDTD.

(9)

2 主要結果

在本節中,我們將給出離散時間非線性馬爾可夫跳變系統(1a)-(1c)的魯棒H∞濾波判定標準,并應用LMI方法來確保增廣系統(6a)-(6b)是均方漸進穩定的且滿足(8)式.下面給出(6a)-(6b)濾波分析的一些充分條件.

定理1 對給定的標量γ>0,ε>0,若存在正定矩陣Ps>0,使得對?s∈Π,?l≥0,以下不等式成立

(10)

證定義增廣系統(6a)-(6b)的Lyapunov-Krasovskii函數為

直接計算可得

運用引理2

E{V(l+1)}-V(l)≤ηT(l)Ξ0(l)η(l),

(11)

現在定義

(12)

則由系統穩定性及(10)式,對任意非零ω(l)∈l2([0,∞),Rp),我們有

(13)

定理2 對給定的標量γ>0,ε>0,若存在正定矩陣Ps>0,非奇異矩陣Yis,Uis,Vis(i=1,2)使得對?s∈Π,?l≥0,以下約束成立

CsXs=Y1sCs,

(14a)

DsXs=Y2sDs,

(14b)

(14c)

X=diag{X1,X2,…,Xv},

ωX=diag{ω1,ω2,…,ωv},

證明首先定義

則(10)式等價于以下不等式

(15)

由引理1,(15)式等價于以下不等式

(16)

由于ρTρ為非奇異矩陣,再次運用引理1并將Afs,Bfs,Efs,Ffs代入(16)式可得

(17)

其中

Λs=As-HCs,ζs=Bs-HDs.

對(17)式左右兩邊分別乘以塊對角矩陣

則(17)式變為

(18)

由(14a)-(14b)可知

X=P-1=diag{X1,X2,…,Xv},

則本定理得證.證畢.

3 數值例子

考慮離散時間非線性馬爾可夫跳系統(1a)-(1c)的兩個模態,給出了它們的系數矩陣

模態1:

模態2:

4 結論

本文主要研究了具有馬爾可夫跳變參數和范數有界非線性函數項的離散時間系統的魯棒H∞濾波問題.基于線性矩陣不等式(LMI)方法得到了濾波問題可解的充分條件和濾波器增益的設計方法,使得所得到的濾波誤差增廣系統是均方漸進穩定的并且其H∞范數小于一個給定的干擾抑制水平γ2.最后給出了一個數值例子來說明所得結果的有效性.

猜你喜歡
模態定義系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
國內多模態教學研究回顧與展望
基于HHT和Prony算法的電力系統低頻振蕩模態識別
由單個模態構造對稱簡支梁的抗彎剛度
計算物理(2014年2期)2014-03-11 17:01:39
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
山的定義
公務員文萃(2013年5期)2013-03-11 16:08:37
主站蜘蛛池模板: 久久久久久久97| 国产一区二区丝袜高跟鞋| 一本大道香蕉高清久久| 久久99这里精品8国产| 亚洲精选无码久久久| 欧美中文字幕一区二区三区| 久久大香香蕉国产免费网站| 国产成人精品一区二区| 亚洲精品777| 国产chinese男男gay视频网| 国产美女一级毛片| 久久无码高潮喷水| 国产亚洲视频在线观看| 亚洲成人高清在线观看| 亚洲福利视频一区二区| 亚洲无码精彩视频在线观看| 久久亚洲黄色视频| 国产乱视频网站| 国产精品xxx| 色AV色 综合网站| 亚洲视频免费在线| 国产精品一区二区不卡的视频| 国产午夜精品一区二区三区软件| 亚洲资源站av无码网址| 欧美中出一区二区| 国产浮力第一页永久地址| 欧美成人综合在线| 国产浮力第一页永久地址| 福利国产微拍广场一区视频在线| 国产91丝袜| 亚洲综合在线最大成人| 久久久久人妻一区精品| 激情六月丁香婷婷| 日韩麻豆小视频| 激情亚洲天堂| 污视频日本| 美女无遮挡免费视频网站| 日本少妇又色又爽又高潮| 亚洲一区二区三区香蕉| 国产亚洲视频在线观看| 免费无码网站| 日韩精品一区二区三区免费在线观看| 欧美成人精品高清在线下载| 亚洲精品天堂自在久久77| 99热国产这里只有精品9九| 伊人久综合| 国产国产人成免费视频77777| 久久久久国产精品嫩草影院| 国产女人在线| 色婷婷久久| 日本道中文字幕久久一区| 欧美黄色网站在线看| 色噜噜中文网| 在线视频一区二区三区不卡| 成人一级免费视频| 婷婷色婷婷| 久久永久视频| 四虎影视无码永久免费观看| 国产特一级毛片| 亚洲日韩精品伊甸| 99在线观看视频免费| 中文字幕欧美日韩高清| 国产国模一区二区三区四区| 最新国产成人剧情在线播放| 国产免费黄| 国产精品一线天| 国产欧美视频在线观看| www.狠狠| 国产黄色视频综合| 真实国产乱子伦高清| 99热精品久久| 波多野结衣AV无码久久一区| 国产精品污污在线观看网站| 久久综合久久鬼| 再看日本中文字幕在线观看| www.99精品视频在线播放| 在线观看亚洲精品福利片| 欧美日韩精品在线播放| 毛片基地视频| 狠狠亚洲婷婷综合色香| 少妇人妻无码首页| 欧美日韩一区二区在线免费观看|