999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

CENTRAL LIMIT THEOREM AND MODERATE DEVIATION FOR NONHOMOGENENOUS MARKOV CHAINS

2019-01-18 09:17:10XUMingzhouDINGYunzhengZHOUYongzheng
數學雜志 2019年1期

XU Ming-zhou,DING Yun-zheng,ZHOU Yong-zheng

(School of Information and Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China)

Abstract:In this article,we study central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense.By Grtner-Ellis theorem and exponential equivalent method,we obtain a corresponding moderate deviation theorem for countable nonhomogeneous Markov chain.

Keywords:central limit theorem;moderate deviation;nonhomogeneous Markov chain;martingle

1 Introduction

Huang et al.[1]proved central limit theorem for nonhomogeneous Markov chain withfinite state space.Gao[2]obtained moderate deviation principles for homogeneous Markov chain.De Acosta[3]studied moderate deviations lower bounds for homogeneous Markov chain.De Acosta and Chen[4]established moderate deviations upper bounds for homogeneous Markov chain.It is natural and important to study central limit theorem and moderate deviation for countable nonhomogeneous Markov chain.We wish to investigate a central limit theorem and moderate deviation for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense.

Suppose that{Xn,n≥0}is a nonhomogeneous Markov chain taking values inS={1,2,···}with initial probability

and the transition matrices

wherepn(i,j)=P(Xn=j|Xn?1=i).Write

When the Markov chain is homogeneous,P,Pkdenote,respectively.

IfPis a stochastic matrix,then we write

where[a]+=max{0,a}.

LetA=(aij)be a matrix defined asS×S.Write.

Ifh=(h1,h2,···),then we write.Ifg=(g1,g2,···)0,then we write|.The properties below hold(see Yang[5,6])

(a)kABk≤kAkkBkfor all matricesAandB;

(b)kPk=1 for all stochastic matrixP.

Suppose thatRis a‘constant’stochastic matrix each row of which is the same.Then{Pn,n≥1}is said to be strongly ergodic(with a constant stochastic matrixR)if for all.The sequence{Pn,n≥1}is said to converge in the Cesro sense(to a constant stochastic matrixR)if for everym≥0,

The sequence{Pn,n≥1}is said to uniformly converge in the Ces`aro sense(to a constant stochastic matrixR)if

Sis divided intoddisjoint subspacesC0,C1,···,Cd?1,by an irreducible stochastic matrixP,of periodd(d≥1)(see Theorem 3.3 of Hu[7]),andPdgivesdstochastic matrices{Tl,0≤l≤d?1},whereTlis defined onCl.As in Bowerman et al.[8]and Yang[5],we shall discuss such an irreducible stochastic matrixP,of perioddthatTlis strongly ergodic forl=0,1,···,d?1.This matrix will be called periodic strongly ergodic.

Remark 1.1IfS={1,2,···},d=2,P=(p(i,j)),p(1,2)=1,p(k,k?1)=,thenPis an irreducible stochastic matrix of period 2.Moreover,

fork≥2.

where

fork≥1.The solution ofπP=πandare

forn≥3.

Theorem 1.1Suppose{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution of(1.1)and transition matrices of(1.2).Assume thatfis a real function satisfying|f(x)|≤Mfor allx∈R.Suppose thatPis a periodic strongly ergodic stochastic matrix.Assume thatRis a constant stochastic matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Assume that

and

Moreover,if the sequence ofδ-coefficient satisfies

then we have

Theorem 1.2Under the hypotheses of Theorem 1.1,if moreover

then for each open setG?R1,

and for each closed setF?R1,

In Sections 2 and 3,we prove Theorems 1.1 and 1.2.The ideas of proofs of Theorem 1.1 come from Huang et al.[1]and Yang[5].

2 Proof of Theorem 1.1

Let

WriteFn=σ(Xk,0≤k≤n).Then{Wn,Fn,n≥1}is a martingale,so that{Dn,Fn,n≥0}is the related martingale difference.Forn=1,2,···,set

and

It is clear that

As in Huang et al.[1],to prove Theorem 1.1,we first state the central limit theorem associated with the stochastic sequence of{Wn}n≥1,which is a key step to establish Theorem 1.1.

Lemma 2.1Assume{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution of(1.1)and transition matrices of(1.2).Supposefis a real function satisfying|f(x)|≤Mfor allx∈R.Assume thatPis a periodic strongly ergodic stochastic matrix,andRis a constant stochastic matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Suppose that(1.4)and(1.5)are satisfied,and{Wn,n≥0}is defined by(2.2).Then

As in Huang et al.[1],to establish Lemma 2.1,we need two important statements below such as Lemma 2.2(see Brown[9])and Lemma 2.3(see Yang[6]).

Lemma 2.2Assume that(?,F,P)is a probability space,and{Fn,n=1,2,···}is an increasing sequence ofσ-algebras.Suppose that{Mn,Fn,n=1,2,···}is a martingale,denote its related martingale difference byξ0=0,ξn=Mn?Mn?1(n=1,2,···).Forn=1,2,···,write

whereF0is the trivialσ-algebra.Assume that the following holds

(i)

(ii)the Lindeberg condition holds,i.e.,for any?>0,

whereI(·)denotes the indicator function.Then we have

Writeδi(j)=δij,(i,j∈S).Set

Lemma 2.3Assume that{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution(1.1),and transition matrices(1.2).Suppose thatPis a periodic strongly ergodic stochastic matrix,andRis matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Assume(1.4)holds.Then

Now let’s come to establish Lemma 2.1.

Proof of Lemma 2.1Applications of properties of the conditional expectation and Markov chains yield

where

and

We first use(1.4)and Fubini’s theorem to obtain

Hence,it follows from(2.10)andπP=πthat

We next claim that

Indeed,we use(1.4)and(2.9)to have

Thus we use Lemma 2.3 again to obtain

Therefore(2.12)holds.Combining(2.11)and(2.12)results in

which gives

Since{V(Wn)/n,n≥1}is uniformly bounded,{V(Wn)/n,n≥1}is uniformly integrable.By applying the above two facts,and(1.5),we have

Therefore we obtain

which implies that the Lindeberg condition holds.Application of Lemma 2.2 yields(2.3).This establishes Lemma 2.1.

Proof of Theorem 1.1Note that

Write

Let’s evaluate the upper bound of|E[f(Xk)|Xk?1]?E[f(Xk)]|.In fact,we use the C-K formula of Markov chain to obtain

here

Application of(1.6)yields

Combining(1.6),(2.3),(2.16),and(2.17),results in(1.7).This proves Theorem 1.1.

3 Proof of Theorem 1.2

In fact,by(1.8),

and the claim is proved.Hence,by using Grtner-Ellis theorem,we deduce thatWn/a(n)satisfies the moderate deviation theorem with rate function.It follows from(1.8)and(2.17)that??>0,

Thus,by the exponential equivalent method(see Theorem 4.2.13 of Dembo and Zeitouni[10],Gao[11]),we see thatsatisfies the same moderate deviation theorem aswith rate function.This completes the proof.

主站蜘蛛池模板: 在线毛片免费| 天天摸夜夜操| 毛片三级在线观看| 91视频青青草| 在线日韩日本国产亚洲| 欧美日本二区| 99视频在线精品免费观看6| 另类综合视频| 亚洲成人网在线播放| 无遮挡国产高潮视频免费观看| 亚洲人成日本在线观看| 奇米精品一区二区三区在线观看| 97超爽成人免费视频在线播放| 欧美精品啪啪| 毛片在线播放a| 久久国产毛片| 亚洲天堂.com| 亚洲人网站| 91久久性奴调教国产免费| 欧美激情视频在线观看一区| 国产成人永久免费视频| 欧美日韩中文字幕在线| 国产精品视频导航| a级毛片免费网站| 福利片91| 国产成人永久免费视频| 人人爽人人爽人人片| 久久久久久久久亚洲精品| 亚洲婷婷在线视频| 精品一区二区三区水蜜桃| 99久视频| 久久国产精品娇妻素人| 国产嫖妓91东北老熟女久久一| 国产自在线拍| 久久精品嫩草研究院| 2018日日摸夜夜添狠狠躁| 天天躁夜夜躁狠狠躁图片| 欧美精品一区二区三区中文字幕| 欧美爱爱网| 中文字幕在线欧美| 日韩在线第三页| 国产主播一区二区三区| 黄色国产在线| 伊人中文网| 成人亚洲天堂| 有专无码视频| 性视频一区| 亚洲高清在线天堂精品| 久久久国产精品无码专区| 午夜影院a级片| 伊人网址在线| 国产精品天干天干在线观看| 国产91精品最新在线播放| 三区在线视频| 国产精品女熟高潮视频| 四虎永久免费网站| 欧美一区日韩一区中文字幕页| 国产福利拍拍拍| 无码精品国产dvd在线观看9久| 欧洲极品无码一区二区三区| 狠狠色丁香婷婷| 国产91麻豆视频| 2048国产精品原创综合在线| 呦女精品网站| 四虎影视国产精品| 免费人成视网站在线不卡| 久久中文字幕2021精品| 久久毛片网| 免费观看精品视频999| 亚洲成a人片在线观看88| 88国产经典欧美一区二区三区| 国产人成网线在线播放va| 91av成人日本不卡三区| 亚洲国产高清精品线久久| 一级黄色网站在线免费看| 欧美日韩中文国产va另类| 欧美中文字幕第一页线路一| 国产黄在线免费观看| 欧美日韩一区二区在线免费观看| 九九热精品免费视频| 成人一区专区在线观看| 国产草草影院18成年视频|