999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SELF-ADAPTIVE SLIDING MODE SYNCHRONIZATION OF A CLASS OF UNCERTAIN FRACTIONAL-ORDER VICTOR-CARMEN SYSTEMS

2019-01-18 09:17:08MAOBeixingWANGDongxiaoCHENGChunrui
數學雜志 2019年1期

MAO Bei-xing,WANG Dong-xiao,CHENG Chun-rui

(College of Science,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)

Abstract:In this paper,we investigate the sliding mode synchronization problem of fractional-order uncertain Victor-Carmen systems.By using self-adaptive sliding mode control approach,sufficient conditions on sliding mode synchronization are provided for the fractional-order systems,which verifies that the master-slave systems of fractional-order Victor-Carmen systems are sliding mode synchronization by choosing proper sliding mode surface and controllers.

Keywords:uncertain fractional-order;Victor-Carmen systems;siding mode;self-adaptive

1 Introduction

Recently,the chaos synchronization of fractional-order systems gained a lot of attention,such as[1–11].Sun in[12]addressed the sliding mode synchronization problem of fractional-order uncertainty systems,which the master-slave systems can realize project synchronization.The authors in[13]studied the problem of self-adaptive sliding mode synchronization of a class of fractional-order chaos systems,which the drive-response systems achieved chaos synchronization.Chaos synchronization control problem was investigated for fractional-order systems in[14].Zhang in[15]considered the self-adaptive trace project synchronization problem of the fractional-order Rayleigh-Duffing-like systems.Since the Victor-Carmen chaos systems involving lots of secreted key parameters and getting extensive use in communications,some results on this topic were investigated.For example,a novel chaotic systems was studied for random pulse generation in[16],and in[17],the terminal sliding mode chaos control of fractional-order systems was studied.In this paper,the problem of sliding mode synchronization of a class of fractional-order uncertain Victor-Carmen systems is tackled using self-adaptive sliding mode control approach,and sufficient conditions on sliding mode synchronization are derived for the fractional-order systems.

Definition 1.1(see[18])The fractional derivative of Caputo is given as follows

2 Main Results

Consider the following integer-order Victor-Carmen systems

wherex1,x2,x3∈R3are system states,a,b,α,β,γare constant parameters.

The responsive systems are as follows

where?fi(y)is uncertain,di(t)is bounded disturbance,uiis controller,subtracting(2.2)to(2.1),we get

Assumption 2.1?fi(y)anddi(t)are bounded,mi,ni>0,|?fi(y)|

Assumption 2.2miandniare unknown for alli=1,2,3.

Assumption 2.3Definite?fi(y)+di(t)=gi(t),i=1,2,3.

Assumption 2.4gi(t)satisfies the condition|gi(t)|≤ε|ei(t)|,where 0<ε<1.

Assumption 2.5Ifei(t)=0,thengi(t)=0 and ifei(t)6=0,thengi(t)6=0.

Lemma 2.6(Barbalat’s lemma,see[19])Iff(t)is uniform continuity in[0,+∞),andis exist,then.

Lemma 2.7(see[19])If there exists a symmetric and positive-definite matrix P such that,where the systems order number 0<α≤1,then general fractional-order autonomous systemsis asymptotic stable.

Theorem 2.8Under Assumptions 2.1–2.5,choosing sliding mode functions(t)=e1+e2+e3,and the following controllers

whereη>0,are the estimate values ofmiandni,and for alli=1,2,3,designing self-adaptive laws

Then the master-slave systems(2.1)and(2.2)of integer-order Victor-Carmen systems are self-adaptive sliding mode synchronization.

ProofWhen the systems state moving on the sliding mode surface,then we can gets(t)=0,(t)=0,because

If we substitute(2.4)to(2.3),thensgn(s),i=1,2 fors(t)=0,it is easy to get.On the other hand,forsgn(s)?ηsgn(s),from(2.5),it is easy to gete1+e2=?e3,so we get,,i=1,2,3.According to Lyapunov stability theory,when,found Lyapunov function,we get

When the systems aren’t moving on the sliding mode surface,we found Lyapunov function as,so it has

sos(t)is bounded and integrable.From Lemma 2.6,we gets(t)→0?ei(t)→0,so the errors converge to zero.

Consider the master systems of fractional-order Victor-Carmen systems

Design the slave systems as following

where?fi(y)is uncertainty,y=[y1y2y3],di(t)is bounded disturbance,uiis controller,subtract(2.7)to(2.6),we get the following errors equation

Theorem2.9Under Assumptions 2.1–2.5,design sliding mode function,choosing controller

whereη>0,are the estimate values ofmi,ni,design self-adaptive laws

Then the master-slave systems(2.6)and(2.7)of fractional-order Victor-Carmen systems are self-adaptive sliding mode synchronization.

ProofWhen the systems state moving on the sliding mode surface,s(t)=0,s˙(t)=0,then,so we get,such that we have

Substitute controller(2.9)to(2.8),we get,i=1,2,when the systems state moving on the sliding mode surfaces(t)=0,so it is easy to get

According to Lemma 2.7,the solution of following equation,soei(t)→0,i=1,2,3.When the systems state moving on the sliding mode surfaces(t)=0,then the solution of errors equation(2.8)is asymptotic stable such that we getei(t)→0,i=1,2,3.

When the systems aren’t moving on the sliding mode surface,we found Lyapunov functionsuch that we get

According to Lemma 2.6,s(t)→0,so we getei(t)→0.

3 Numerical Simulation

In this section,the example is provided to verify the effectiveness of the proposed method.The systems appears chaos attractors,when

the disturbance is bounded

From Figure 1,we see that the systems aren’t getting synchronization without controller.From Figure 2,we see the systems getting rapidly synchronization with controller.From Figure 3,we see that the errors approaching zero,which verifies the systems getting chaos synchronization rapidly.

In Theorem 2.8,g1(t)=cos(2πy2)+0.2cost,g2(t)=0.5cos(2πy3)+0.6sint,g3(t)=0.3cos(2πy2)+cos3t,η=2.5.The uncertainty and outer disturbance as Theorem 2.9,η=3,q=0.873,the systems errors as Figure 4.

4 Conclusion

In this paper,we study the self-adaptive sliding mode synchronization problem of a class of fractional-order Victor-Carmen systems based on fractional-order calculus.The conclusion indicates that the systems are self-adaptive synchronization if designing appropriate controller and sliding mode function.We give out the strict proof in mathematics,and the numerical simulation demonstrates the effectiveness of the proposed method.

Figure 2:State of master-slave with control

Figure 3:The system errors of Theorem 2.8

Figure 4:The system errors of Theorem 2.9

主站蜘蛛池模板: 日本三级欧美三级| 在线观看国产精美视频| 精品精品国产高清A毛片| 欧美性猛交xxxx乱大交极品| 欧美一级高清片久久99| 欧美无遮挡国产欧美另类| 国产精品亚洲αv天堂无码| 成人福利在线观看| 久久久波多野结衣av一区二区| 日韩天堂在线观看| 欧美一区二区自偷自拍视频| 女同久久精品国产99国| 中国黄色一级视频| 日本国产精品一区久久久| 午夜精品一区二区蜜桃| 人妻夜夜爽天天爽| 澳门av无码| 黄片在线永久| 国产Av无码精品色午夜| 国产精品第5页| 国产精品美女免费视频大全| 欧美在线一二区| 中文字幕亚洲精品2页| 91 九色视频丝袜| 国产精品亚洲天堂| 亚洲成A人V欧美综合天堂| 日韩经典精品无码一区二区| 熟妇人妻无乱码中文字幕真矢织江 | 激情乱人伦| 夜夜爽免费视频| 一级毛片免费不卡在线| 日本欧美中文字幕精品亚洲| 亚洲国产日韩视频观看| 国产精品精品视频| 国产又黄又硬又粗| 欧美成人国产| 精品国产毛片| 亚洲日韩日本中文在线| 污视频日本| 97人妻精品专区久久久久| 久久无码av一区二区三区| 欧美视频在线观看第一页| 国产91在线|日本| 亚洲区欧美区| 无码aaa视频| 亚洲成肉网| 亚洲日韩久久综合中文字幕| 久久精品只有这里有| 亚洲男人的天堂久久精品| 色亚洲激情综合精品无码视频 | 欧美精品1区2区| 在线观看国产网址你懂的| 国产一区二区三区视频| 99久久国产综合精品2023| 久久国产精品嫖妓| 日本手机在线视频| 欧美色伊人| 亚洲美女视频一区| 国产成人综合亚洲欧美在| 亚洲天堂网视频| 精品自窥自偷在线看| 亚洲无码高清一区二区| 日韩在线永久免费播放| 久久99久久无码毛片一区二区| 五月天久久综合| 欧美在线视频不卡| 国产在线97| 国产二级毛片| 亚洲一级色| 全色黄大色大片免费久久老太| 亚洲码一区二区三区| 日韩亚洲高清一区二区| 国产高颜值露脸在线观看| 大学生久久香蕉国产线观看| 天天综合网色中文字幕| 亚洲国产成人在线| 夜夜高潮夜夜爽国产伦精品| 日本伊人色综合网| 国产综合精品日本亚洲777| 日韩中文无码av超清| 亚洲av无码牛牛影视在线二区| 国产尤物jk自慰制服喷水|