999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE COMPUTING FORMULA FOR TWO CLASSES OF GENERALIZED EULER FUNCTIONS

2019-01-18 09:17:00LIAOQunyingLUOWenli
數(shù)學(xué)雜志 2019年1期

LIAO Qun-ying,LUO Wen-li

(1.College of Mathematics,Sichuan Normal University,Chengdu 610066,China)

(2.The Middle School Attached to Sichuan University(No.12 Middle School),Chengdu 610061,China)

Abstract:In this paper,we study the computing formula of the generalized Euler function.By using elementary methods and techniques,we obtain the computing formula of the generalized Euler function ?pq(n)for some cases and the computing formula of ?e(n)(e=p,p2)for any prime factor m|nwith m≡1 or?1(mod e)and gcd(m,e)=1,where pand qare distinct primes,which are the generalizations for the corresponding main results given in[5].

Keywords:Euler function;generalized Euler function;Mbius function

1 Introduction

In 18th century,as one of the most outstanding mathematician,Euler first defined the Euler function?(n)of a positive integernto be the number of positive integers not greater thannbut prime ton[1].It’s well known that as one of the important number theory functions,Euler function was applied widely.Euler function played a key role in RSA public-key cryptosystem since 1970’s,and it is also one of the important tools to seek the theoretical basis for the generators of circle groups.There were many interesting open problems on Euler function[2].For example,Carmichael conjectured that for any positive integern,there exists a positive integermsuch thatm 6=nand?(m)=?(n).And then Schinzel conjectured that for any fixed positive integerk,the equation?(n+k)=?(n)has infinitely many positive integer solutions forn.

On the other hand,in 1938,for any odd primep,Lehmer[3]established the following important congruence identity

whereqr(n)denotes the Euler quotient,i.e.,,nandr≥2 are both natural numbers with gcd(n,r)=1.

By using(1.1)and the others similar congruences identity,Lehmer obtained many ways to prove the first case of the well-known Fermat’s last theorem[4].Until 2002 and 2007,basing on(1.1)and the other congruence identities given by Lehmer,Cai,etc[5,6]generalized the modulo from the square of a prime to the square of any positive integer,and defined the generalized Euler function for any positive integernto be

i.e.,?e(n)is the number of positive integers not greater thanbut prime ton,whereeis a positive integer and[x]is the greatest integer which is not greater thanx.It’s easy to verify that?1(n)=?(n)is the known Euler function ofn,and

whereμ(n)is the Mbius function,i.e.,

On the other hand,fore=1,the following computing formula for the generalized Euler function is well-known

Therefore one can naturally to ask the following

QuestionFor any fixed positive integere,determine the explicit algorithm formula for the generalized Euler function?e(n).

In recent years,Cai etc[7,8]obtained the accurate calculation formula for?e(n)(e=2,3,4,6),and then,by using properties for Legendre or Jacobi symbols,they also got some necessary and sufficient conditions for that?e(n)and?e(n+1)(e=2,3,4)are both odd or even numbers.

Proposition 1.1[7,8]Letp1,···,pkbe distinct primes,α1,···,αkbe positive integers,and.

(1) If gcd(pi,3)=1(i=1,···,k)andn=3αn1>3,then

(2) Ifαis a nonnegative integer andn=2αn1>4,then

(3) If gcd(pi,6)=1(i=1,···,k)andn=2α3βn1>6,then

Recently,we[9]obtained the formula for?5(n)and some sufficient conditions for 2|?5(n).The present paper continues the study,based on the elementary methods and techniques,the computing formula for?e(n)(e=p,p2,pq)is obtained,wherepandqare distinct primes(Theorems 1.1–1.5).

For convenience,throughout the paper,we assume thatp,q,p1,···,pkare distinct primes,α1,···,αkare positive integers,αandβare both nonnegative integers,and

Theorem 1.1Ifn=pαn1>p,then

Theorem 1.2Ifn=pαn1>p2,then

Theorem 1.3Forn=pαn1>p2andα≤2.

(1) Ifα=0,then

(2) Ifα=1,then

(3) Ifα=2,then

Theorem 1.4Ifn=pαqβn1>pq,then

Theorem 1.5Forn=pαqβn1>pq.

(1) Ifα=β=0,then

(2) Ifα=1 andβ=0,then

(3) Ifα=0 andβ=1,then

(4) Ifα=β=1,then

(5) Ifα≥2 andβ=0,then

(6) Ifα≥2 andβ=1,then

(7) Ifβ≥2 andα∈{0,1},then

RemarkBy takingp=3 in Theorem 1.1,orp=2 in Theorems 1.2–1.3,one can get(1)or(2)of Proposition 1.1,respectively.And by takingp=2 andq=3 in Theorems 1.4–1.5,one can get(3)of Proposition 1.1.The details is left to interested readers.

2 Proofs for Main Results

Proof for Theorem 1.1(1) Ifα=0 andpi≡?1(modp)(i=1,···,k),i.e.,n=n1and for anyd|n1,d≡±1(modp).Then by(1.2)–(1.4),we have

(a) If 2|?(n)and 2|k,then by(2.1)andn=n1,we have ?(n)= ?(n1),ω(n)=ω(n1)and

(b) If 2|?(n)and 2-k,then by(2.1)we have

For the case 2-?(n)and 2-kor 2-?(n)and 2|k,in the same proof,we can get

(2) Ifα=1 and for anyi=1,···,k,pi≡?1(modp),i.e.,n=pn1and for anyd|n1,d≡±1(modp).Then by(1.2)–(1.3),(2.2)and gcd(p,n1)=1,we have

and then

(3) Ifα≥2,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

and then

(4) Ifα=0 andpi≡1(modp)(i=1,···,k),i.e.,n=n1and for anyd|n1,d≡1(modp).Then by(1.2)and(1.4),we have

(5) Ifα=1 andpi≡1(modp)(i=1,···,k),i.e.,n=pn1,then?(n)=(p?1)?(n1)and for anyd|n1,d≡1(modp).Thus by(1.2)–(1.3),gcd(p,n1)=1 and(4)we have

Now from(2.2)–(2.6),Theorem 1.1 is proved.

Proof for Theorem 1.2(1) For the caseα=0,the result is obvious.

(2) Ifα=1,i.e.,n=pn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

(3) Ifα=2,i.e.,n=p2n1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

(4) Ifα≥3,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have?(n)=p2(pα?2?pα?3)?(n1),and then

Now from(2.7)–(2.9),we complete the proof of Theorem 1.2.

Proof for Theorem 1.3(1) Ifα=0,i.e.,n=n1,and then gcd(n,p)=1.Suppose thatpi≡1(modp2)(i=1,···,k),then for anyd|n,d≡1(modp2),thus by(1.2)–(1.4),we have

Suppose thatpi≡?1(modp2)(i=1,···,k),i.e,for anyd|n,d≡±1(modp2),and then by(1.2),(1.4)and the proof of Theorem 1.1(1),we can get

Now from(2.10)–(2.11),we complete the proof of(1).

(2) Ifα=1,i.e,n=pn1,then by gcd(p,n1)=1,we have

And so by Theorems 1.1–1.2,(2.12)and(1),we can obtain

This completes the proof of(2).

(3) Ifα=2,i.e,n=p2n1,then by gcd(p,n1)=1,we have

Thus by Theorems 1.1–1.2 and(2.13),in the same proof as that of Theorem 1.3(2),(3)is immediate.

This completes the proof of Theorem 1.3.

Proof for Theorem 1.4(1) Ifα=0,β=0,the result is obvious.

(2) Ifα=1,β=0,i.e.,n=pn1,then by gcd(pq,n1)=gcd(p,q)=1 and(1.2)–(1.3),we have

(3) For the caseα=1,β=0,in the same proof of(2),the result is obvious.

(4) Ifα=β=1,i.e.,n=pqn1,then by gcd(pq,n1)=gcd(p,q)=1 and(1.2)–(1.3),in the same proof as that of(2),(4)is immediate.

(5) Ifα≥2 andβ=0,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we can obtain

While byα≥2 and(1.2)–(1.4),we know that

thus by(2.15)–(2.16),we have?pq(n)=?q(pα?1n1).Thus(5)is proved.

(6) Ifα≥2 andβ=1,i.e.,n=pαqn1,then by gcd(p,n1)=1,we have

Thus by(1.2)–(1.4),(2.16)and(2.17),we can get

(7) Ifα≥2 andβ≥2,then by gcd(pq,n1)=gcd(p,q)=1,and(1.2)–(1.4),we have

and then

This completes the proof of(7).

Proof for Theorem 1.5(1) For the caseα=β=0,i.e.,n=n1.

(i) Ifpi≡1(modpq)(i=1,···,k),then for anyd|n,d≡1(modpq).Thus by(1.2)and(1.4),we have

(ii) Ifpi≡?1(modpq)(i=1,···,k),i.e.,for anyd|n,d≡±1(modpq).Then by(1.2)–(1.4)and the proof of Theorem 1.1(1),we have

From(2.18)–(2.19),we complete the proof of(1).

(2) Forα=1 andβ=0,i.e.,n=pn1,then by gcd(pq,n1)=gcd(p,q)=1,we have

(i) Ifpi≡1(modpq),thenpi≡1(modq)(i=1,···,k).And so by Theorem 1.1,Theorem 1.4 and(2.18),we have

(ii) Ifpi≡?1(modpq),thenpi≡?1(modq)(i=1,···,k),thus by Theorem 1.1,Theorem 1.4,and(2.19),we have

Now from(2.20)–(2.21),we complete the proof of(2).

(3) Forα=0 andβ=1,in the same proof as that of(2),the result is immediate.

(4) Forα=β=1,i.e.,n=pqn1,then by gcd(pq,n1)=gcd(p,q)=1,we have

(i) Ifpi≡1(modpq),i.e.,pi≡1(modq)andpi≡1(modq)(i=1,···,k).Then by Theorem 1.1,Theorem 1.4 and(2.18),we have

(ii) Ifpi≡?1(modpq),then by Theorem 1.1,Theorem 1.4 and(2.19),we have

Now from(2.22)–(2.23),we complete the proof of(4).

(5) Forα≥2 andβ=0,i.e.,n=pαn1,then by gcd(n1,pq)=gcd(p,q)=1,we have

(i) Ifp≡pi≡1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.24),we have

(ii) Ifp≡pi≡?1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.24),we have

Now from(2.25)–(2.26),we complete the proof of(5).

(6) Forα≥2 andβ=1,i.e.,n=pαqn1,then by gcd(n1,pq)=gcd(p,q)=1,we have

(i) Ifp≡pi≡1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.27),we have

(ii) Ifp≡pi≡?1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.27),in the same proof as that of case(5)(ii),one can get

Now from(2.28)–(2.29),we complete the proof of(6).

(7) Ifβ≥2 andα=0 or 1,in the same proofs as those of(4)and(5),the result is obvious.

From the above,Theorem 1.5 is proved.

主站蜘蛛池模板: a级毛片免费播放| 综合天天色| 2020精品极品国产色在线观看| 午夜毛片福利| 91欧美亚洲国产五月天| 91精品专区| 中文字幕在线观看日本| 欧美精品H在线播放| 奇米影视狠狠精品7777| 国产精品lululu在线观看| 亚洲AV无码乱码在线观看裸奔| 精品视频福利| 久久男人资源站| 日韩成人在线网站| 欧美精品啪啪| 亚洲中文字幕无码爆乳| 午夜精品久久久久久久无码软件| 欧洲成人免费视频| 国产福利观看| 国产在线精品人成导航| 欧美不卡二区| v天堂中文在线| 男女猛烈无遮挡午夜视频| 亚洲欧洲自拍拍偷午夜色无码| 97精品国产高清久久久久蜜芽| 2020精品极品国产色在线观看| 黑人巨大精品欧美一区二区区| 玖玖免费视频在线观看| 免费全部高H视频无码无遮掩| 欧美精品成人| 91网站国产| 996免费视频国产在线播放| 亚洲男人在线| 国产午夜在线观看视频| 亚洲一区二区三区国产精品 | 久久精品电影| 国产精品永久免费嫩草研究院| 欧美成人日韩| 国产精品亚欧美一区二区| 国产毛片网站| 亚洲国产日韩在线观看| 四虎影院国产| 久久精品人人做人人| 色成人亚洲| 青青青视频91在线 | 色偷偷一区| 国内熟女少妇一线天| 九九热精品视频在线| h网站在线播放| 精品国产91爱| 日韩亚洲高清一区二区| 91丝袜乱伦| h网站在线播放| 欧美黄网站免费观看| 亚洲成a人在线观看| 天天综合网色中文字幕| 亚洲成a人在线观看| 中文字幕资源站| 亚洲国产成人在线| 少妇精品久久久一区二区三区| 四虎永久免费地址| 亚洲资源站av无码网址| 亚洲欧美在线综合一区二区三区| 91精品免费高清在线| 欧美成一级| 伊人丁香五月天久久综合| 亚洲国产精品日韩av专区| 五月天久久综合国产一区二区| 91探花在线观看国产最新| 国模在线视频一区二区三区| 女人18毛片久久| a毛片在线播放| 久久精品国产精品青草app| 久久夜色精品国产嚕嚕亚洲av| 中文字幕亚洲另类天堂| 极品av一区二区| 久久99精品国产麻豆宅宅| 中文字幕伦视频| 国产精品自在在线午夜| 中文字幕1区2区| 国产亚洲欧美日韩在线一区二区三区| 国产成人亚洲日韩欧美电影|