劉文營,李 享,成曉瑜
?
添加西蘭花種子水提物改善臘肉色澤和風味提高抗氧化性
劉文營,李 享,成曉瑜※
(中國肉類食品綜合研究中心,肉類加工技術北京市重點實驗室,北京食品科學研究院,北京 100068)
為了分析西蘭花種子提取物(L. seed extract,BSE)的體外抗氧化能力,以及其在廣式臘肉中的應用效果,該文對不同BSE添加量的應用效果進行了分析,并與添加2,6-二叔丁基-4-甲基苯酚(butylated hydroxytoluene,BHT)的應用效果進行了比較。基于基礎配方,共制備了對照組(CT)、添加0.2% BSE組(0.2% BSE)、添加0.5% BSE組(0.5% BSE)、添加1% BSE組(1.0% BSE)、添加1.5% BSE組(1.5% BSE)和添加0.02% BHT組(BHT)6組樣品。研究結果顯示,BSE的體外總抗氧化能力與其在水溶液中的含量成正比;在脂質體系條件下,BSE的抑制誘導氧化作用呈現(xiàn)為先增加后降低的趨勢,相比于1.0%添加量,添加量為1.5%時,樣品的抑制誘導氧化作用明顯降低(<0.05);相比于BSE,BHT具有明顯的抑制氧化作用(<0.05);隨著BSE添加量的增加,樣品的硫代巴比妥酸反應物(thiobarbituric acid reactive substance,TBARS)值呈現(xiàn)為降低的趨勢,BHT樣品TBARS值介于1.0%BSE和1.5%BSE樣品之間;各加工方案樣品均具有明顯的主體特征風味,添加BHT樣品的主體風味與其它樣品有明顯差異;1.5%BSE樣品具有最高的亮度值(*)和黃度(*),BHT樣品具有最高的紅度(*);通過對揮發(fā)性風味物質的分析結果顯示,揮發(fā)性成分隨添加方案的不同而各有差異。綜合結果顯示,添加1.5% BSE廣式臘肉具有較理想的色澤、氧化狀態(tài)和風味物質含量,可以替代BHT使用。
提??;氧化;肉;西蘭花種子提取物;抗氧化能力;廣式臘肉;感官特征
肉制品脂質過氧化反應產物及其次級產物是導致產品質量受損的重要因素[1],也與蛋白質和色素類物質的氧化反應息息相關[2-3],這些均會對肉制品的顏色、風味和質構特性產生不利影響[4],甚至會有有毒物質生成[5]。
因此,針對肉制品脂質的過氧化反應控制是維持營養(yǎng)屬性、增強理化特性穩(wěn)定性和延長貨架期的重要舉措[6],2,6-二叔丁基-4-甲基苯酚(butylated hydroxytoluene,BHT)等化學合成抗氧化劑因其高效和價廉而被廣泛應用[7],但是鑒于其對人和動物的潛在毒害[8],以及人們更高的食品安全要求,研究者將目光轉向天然抗氧化劑的應用效果分析[9]。針對天然物質的潛在抗氧化活性研究,如鼠尾草[10-11]、迷迭香提取物[12]、茶多酚[10,13]、葡萄籽提取物[14]、中草藥渣[15]、果渣[16-17]、香料提取物[18]、姜黃素[19]、花椒葉多酚[20]和甘草提取物[10]等均具有明顯的抑制效果。西蘭花種子提取物(L. seed extract,BSE)含有大量芥子苷、異硫氰酸酯和蘿卜硫素等活性物質,具有優(yōu)良的抗誘變[21]、抗遺傳毒性[22]和抑制蛋白質糖基化等作用[23],在醫(yī)藥行業(yè)和健康食品加工上有著顯著的應用效果。但是BSE在肉制品中的研究鮮有見諸報端,缺乏BSE對肉制品脂質的氧化抑制參考[24]。
本文對BSE的體外抗氧化能力和抑制脂肪氧化能力進行了分析,并就BSE在廣式臘肉加工中的應用效果進行了驗證,就成品顏色、主體風味、硫代巴比妥酸反應物(thiobarbituric acid reactive substances,TBARS)值和揮發(fā)性成分的差異進行了研究,以期為BSE在廣式臘肉加工中的應用,以及肉制品的綠色制造提供借鑒。
里脊(longissimus dorsi muscle)、背脂購于北京中瑞食品有限公司;食鹽、五香粉、味精、白砂糖、異抗壞血酸鈉均為食品級,購自北京新發(fā)地批發(fā)市場;52°白曲酒產自瀘州老窖股份有限公司。
西蘭花種子水提物(99%)科耐歐貿易(上海)有限公司;高氯酸、無水乙醇、硫代巴比妥酸均為分析純 國藥集團化學試劑上海有限公司;丙二醛二乙縮醛產自梯希愛(上海)化成工業(yè)有限公司;總抗氧化能力分析(FRAP法)試劑盒上海碧云天生物技術有限公司;BHT北京伊諾凱科技有限公司;氧氣(99.999%)北京如源如泉科技有限公司;2甲基-3-庚酮(99%,CAS號13019-20-0)、正己烷(95%,CAS號 110-54-3)購自西格瑪奧德里奇(上海)貿易有限公司。
PEN3電子鼻,德國Airsense公司;CR-400色差計,柯尼卡美能達投資有限公司;GC-MS聯(lián)用儀,美國賽默飛世爾科技(中國)有限公司;Cary 50 spectrophotometer紫外可見分光光度計,美國Varian公司;絞肉機,美國Hobart電器公司;Cascada BIO純水機,美國PALL公司;CR21GⅢ離心機,日本日立株式會社;F6/10-10G超細勻漿器,上海FLUKO流體機械制造有限公司;BSA822-CW天平,賽多利斯科學儀器有限公司。
1.3.1 廣式臘肉加工及處理
原料肉規(guī)格修整為3 cm×3 cm×15 cm,與輔料混合后靜置腌制48 h,期間每隔8 h翻動十次,然后在12℃、相對濕度80%條件下成熟120 h,成品率為60%。成品經真空包裝后,置于4℃待測。
基礎輔料為(占原料肉質量):白砂糖(10.0%)、食鹽(2.0%)、五香粉(0.2%)、異抗壞血酸鈉(0.2%)、味精(0.5%)、白酒(2.0%)和水(10.0%),除對照組外(CT),各試驗組分別添加0.2% BSE(0.2% BSE)、0.5% BSE(0.5% BSE)、1.0% BSE(1.02% BSE)、1.5% BSE(1.5% BSE)和0.02% BHT(BHT)[25]。
1.3.2 脂肪體系抗氧化誘導能力分析
以液化豬脂為研究對象,背脂絞碎至5 mm大小,加水煮(水的添加量為背脂質量的10%),待水分完全揮發(fā),殘渣顏色變黃時,收集液態(tài)油脂進行豬脂誘導氧化試驗。
參考文獻[26]方法,誘導溫度為90℃,氧氣加壓壓力為6′105Pa。氧氣壓力隨著脂肪氧化程度的加深而降低,由此可根據(jù)氧氣壓力變化判斷氧化進展。氧氣壓力穩(wěn)定階段曲線切線與氧氣消耗初期壓力下降曲線切線交點所對應的軸時間,為脂肪快速氧化反應起始點,即為所需誘導氧化時間,數(shù)據(jù)收集間隔時間為60 s。
1.3.3 BSE的總抗氧化能力分析(ferric ion reducing antioxidant power,F(xiàn)RAP法)
FRAP法測定總抗氧化能力的原理是酸性條件下抗氧化物質可以還原Ferric-tripyridyltriazine(Fe3+-TPTZ)產生藍色的Fe2+-TPTZ,依據(jù)其在593 nm下吸光值大小可獲得樣品的總抗氧化能力。參考文獻[27]方法,使用總抗氧化能力檢測試劑盒,對BSE的總抗氧化能力進行分析,考察的BSE濃度分別為0.2、0.5、1.0和1.5 g/100 mL 溶液。
具體操作為用0.15、0.30、0.60、0.90、1.20和1.50 mM FeSO4做標準曲線,96孔板檢測孔內添加180L FRAP工作液,然后分別添加5L樣品或者標準溶液,輕搖后放置于37 ℃,保持5 min后測593,結果單位為mmol/L。標準曲線為:總抗氧化能力=0.674·593–0.009(2=1)。
1.3.4 硫代巴比妥酸反應物(thiobarbituric acid reactive substances,TBARS)值分析
參照文獻[28-29]方法,略有修改,取5.0 g樣品,冰浴條件下,加25 mL高氯酸(質量體積比,3.86%)和1.0 mL BHT(4.2%),高速剪切(6 000 r/min,1 min)后過濾懸漿并離心,取2 mL上清,加入2 mL硫代巴比妥酸(0.02 mol/L),沸水浴45 min,冷卻至室溫后測532 nm,以丙二醛縮乙二醛作為標準物質進行標準曲線的制備,濃度為0.10、0.20、0.50、0.80和1.00g/mL。標準曲線為:TBARS值=0.692′532 nm–0.014(2=0.999)。
1.3.5 主體風味差異性分析
參考文獻[30]方法,取2.0 g樣品置于瓶內,在50 ℃條件下恒溫2 min后測試,不同傳感器分別對不同的物質發(fā)生響應,根據(jù)傳感器響應值差異,如圖1所示,進行樣品主體風味的相似度分析,每個樣品做5個平行,選取70 s時數(shù)據(jù)進行分析。

圖1 化學傳感器及其主要響應的物質
1.3.6 顏色信息分析
參考文獻[30-31]方法,臘肉厚度為10 mm,由色差計測定的三刺激值(、、),計算樣品的*、*和*值,計算公式為(1)~(3)。



1.3.7 揮發(fā)性成分分析
參考文獻[32-34]方法,略有修改,從每塊臘肉中隨機取2 g,匯總絞碎后隨機取3 g,采用固相微萃取進行揮發(fā)性物質富集,樣品風味物質富集溫度為50℃,恒溫時間為30 min,采用GC-MS對揮發(fā)性物質進行分析。
以2甲基-3-庚酮(CAS號 13019-20-0)為內標物質,用正己烷稀釋,濃度為1.632g/L,添加量為1L。
脂肪體系誘導氧化、總抗氧化能力和TBARS值測試時,均進行3個平行,采用SPSS 9.1進行誤差性分析,數(shù)值標記為:平均值±標準差;在每塊臘肉的不同位置隨機采集2次顏色信息,匯總數(shù)據(jù)采用SPSS 9.1進行誤差性分析,數(shù)值標記為:平均值±標準差;電子鼻分析時運用Winmuster軟件進行主成分分析(principal component analysis,PCA)和線性判別分析(linear discriminant analysis,LDA),每個樣品進行5個平行;揮發(fā)性成分分析時,根據(jù)CAS號進行化學物質檢索(http://www.chemindex. com/)。
采用Origin8.0軟件進行數(shù)據(jù)的整理和作圖。
BSE含有豐富的芥子苷、異硫氰酸酯和蘿卜硫素等活性物質,具有明顯的抗氧化活性[35],采用FRAP法測試0.2%、0.5%、1.0%和1.5%BSE水溶液的總抗氧化能力如圖2所示,不同濃度BSE水溶液樣品之間具有顯著差異(<0.05)。基于溶液中BSE含量,通過線性擬合結果顯示,2=0.996,說明BSE的總抗氧化能力與其含量具有明顯的線性關系,即隨著提取物濃度的增加,溶液總抗氧化能力隨之增強,驗證了其活性物質的抗氧化作用。
抑制脂質體系的誘導氧化結果如圖2所示,隨著BSE添加量的增加,誘導氧化的時間呈現(xiàn)為先增加后降低的趨勢,在添加量為1.0%時,誘導氧化時間最長為(5.09± 0.04)h,總體呈現(xiàn)為先增加后降低的趨勢,誘導氧化時間與脂質體系的抗氧化能力呈正比,即隨著BSE添加量的增加,脂質體系的抗氧化能力呈現(xiàn)為先增加后減少的趨勢;而當添加量為1.5%時,誘導氧化時間發(fā)生了減少的現(xiàn)象,即在脂質環(huán)境下,BSE添加量的增加與抑制作用非正相關。BHT為油溶性化學合成抗氧化劑,其因價廉高效而被廣泛應用,將BHT添加到脂質體系時,抑制誘導氧化時間為(35.41±1.17)h,顯著高于其它樣品組的誘導氧化時間(<0.05),與劉文營等[36]在多種抗氧化劑的抑制作用進行分析時結果一致,化學合成抗氧化劑的氧化抑制效果顯著高于天然抗氧化劑,這也是盡管BHT等化學合成抗氧化劑雖然具有潛在毒害,但仍然得到廣泛應用的原因之一。但是隨著消費者對其毒害作用認識的增強,以及人們對于更高品質食品的追求,化學合成抗氧劑會逐漸被天然抗氧化劑所取代。

注:CT為對照,BSE及數(shù)值為西蘭花種子水提物濃度,BHT為2,6-二叔丁基-4-甲基苯酚,下同。
各加工處理廣式臘肉的TBARS值如圖3所示,添加BSE樣品TBARS值隨著BSE添加量增加呈現(xiàn)為降低的趨勢,除0.5%BSE與1.0%BSE、1.0%BSE與1.5%BSE之間差異不顯著外(>0.05),其他添加BSE樣品之間均具有顯著性差異(<0.05)。結果與2.1中BSE水溶液的總抗氧化能力結果一致,即驗證了添加物質的抗氧化能力與樣品的TBARS值息息相關,且呈現(xiàn)為負相關。同時,添加BHT廣式臘肉TBARS值介于1.0%BSE組和1.5%BSE組之間,BHT與1.0%BSE、1.5%BSE組樣品之間TBARS值沒有顯著性差異(>0.05),即BSE添加量介于1.0%和1.5%之間時,與添加BHT效果相似。

注:不同字母表示具有顯著性差異(P<0.05),下同。
肉制品原料、加工工藝和輔料均會對肉制品的物化性質和感官品質產生影響[30],不同加工處理樣品風味的PCA和LDA分析如圖4所示,各試驗方案樣品在PC1和PC2上的方差貢獻值為96.39%和3.04%,兩者的方差總貢獻率為99.43%,說明各樣品均具有明顯的主體風味特征[37]。由圖4所示,除CT與0.2%BSE、1.0%BSE組等有部分交叉外,其他樣品之間均具有明顯的獨立性,如BHT與其他組樣品之間沒有交集,說明添加物質的不同對樣品風味的影響顯著,與2.1節(jié)中BHT明顯抑制脂肪氧化結果一致;由圖4所示,LD1和LD2的方差貢獻率為99.90%和0.05%,總貢獻率為99.95%,BHT與其他組之間在LD1方向上沒有任何重疊區(qū)域,說明BHT與其他組之間具有明顯的差異性[37],也與2.1中BHT明顯抑制氧化結果一致,同時與PC1方向上的差異結果一致。其它組在LD1方向上高度重合,方差貢獻率為99.90%,說明樣品的主體風味相似,即樣品的氧化程度差異不明顯,與2.1節(jié)中BSE在脂質條件下的抗氧化結果相似。
肉制品顏色特征受多種因素影響,如色素類物 質[38-39]、原料肉[40]和輔料種類[41]等。由表1可知,BSE和BHT等物質的添加對廣式臘肉顏色產生了不同的影響,與添加迷迭香提取物[42]、鼠尾草籽提取物[43]等結果一致,即添加物會影響肉制品顏色。

圖4 不同加工處理廣式臘肉主體風味特征分析
不同加工處理樣品的顏色信息由表1可知,CT、0.2%BSE和0.5%BSE之間*差異不顯著(>0.05),CT、0.5%BSE和1.5%BSE之間*差異不顯著(>0.05),0.2%BSE、1.0%和BHT之間*差異不顯著(>0.05),即BSE添加量為1.5%時,樣品*與CT樣品*無顯著差異,且較高。CT、0.2%BSE和1.5%BSE之間*差異不顯著(>0.05),0.2%BSE、0.5%BSE和1.5%BSE樣品*差異不顯著(>0.05),1.0%BSE和1.5%BSE之間*差異不顯著(>0.05),BHT樣品*明顯高于其他處理樣品(<0.05)。CT、0.2%BSE、0.5%BSE、1.0%BSE和BHT之間*差異不顯著(>0.05),BHT和1.5%BSE之間*差異不顯著(>0.05),1.5%BSE樣品*與其他BSE樣品之間具有顯著性差異(<0.05)。

表1 不同加工處理對廣式臘肉顏色的影響
由表2可知,6組樣品種,CT樣品中總揮發(fā)性物質質量分數(shù)為12.764g/g,BHT樣品中總揮發(fā)性物質質量分數(shù)為17.686g/g;添加不同濃度BSE的樣品中總揮發(fā)性物質質量分數(shù)分別為11.238、9.056、6.944和12.014g/g,呈現(xiàn)為降低后增加的趨勢,與2.1節(jié)中BSE抑制誘導氧化作用的趨勢相反,即抑制誘導氧化的作用越強,揮發(fā)性物質含量越低,說明添加方案不同對樣品揮發(fā)性物質產生了影響[44–45]。

表2 不同加工處理廣式臘肉的揮發(fā)性物質
注:“–”表示未檢出。
Note: ‘–’is not detected.
6組樣品中揮發(fā)性物質的種類,CT樣品為26,添加BSE樣品揮發(fā)性物質種類有所增加,為34種,添加BHT樣品揮發(fā)性物質最多,為39種。只在CT中檢出的揮發(fā)性成分為2-甲基戊烷、2,3-環(huán)氧丁烷、花生五烯酸、十二甲基環(huán)六硅氧烷、1-硝基-2-辛酮、七氯環(huán)氧化物、2-氯辛烷和-萜品醇;只在添加BSE樣品中檢出的為3甲基-6-(1-甲基乙基)-2-環(huán)己烯-1-酮;只在添加BHT樣品中檢出的7,10,13-十六碳三烯酸甲酯、衣蘭油烯、()-2,4-癸二烯醛、-石竹烯、1-十三醇、3-烯丙基-6-甲氧基苯酚和1,3-二硬脂酸甘油酯;在添加BSE和BHT樣品中均檢出的為1,1-二乙氧基-3-甲基丁烷、正己醛、正庚醛、正辛醛、壬醛、1-辛烯-3-醇、芳樟醇、4-萜烯醇、十四甲基六硅氧烷、L-香芹酮、2-十一烯醛、A-姜黃烯和間桂醇。添加BSE或BHT后,樣品中醛類物質種類和含量均有增多,而醛類物質是脂質氧化的直接產物,說明BSE和BHT均會調控脂質的氧化,有助于豐富樣品風味。其中正己醛、正庚醛和正辛醛含量隨著BSE添加量的增加,呈現(xiàn)為降低后升高的趨勢,與2.1節(jié)中脂質體系下BSE的氧化抑制作用相反,驗證了醛類物質可以從側面反映氧化程度的假設[46]。而BHT樣品中揮發(fā)性物質的種類和含量均高于其他樣品,與2.3節(jié)結果一致,說明風味主體物質受揮發(fā)性成分組分的影響。
1)本文對BSE的體外總抗氧化能力和脂質體系下的抑制誘導氧化作用進行了分析,隨著BSE濃度的增加,BSE水溶液的總抗氧化作用呈現(xiàn)為增加的趨勢,具有明顯的量效效應(2=0.996);在低添加量條件下(≤1.0%),脂質體系下的氧化誘導時間呈現(xiàn)為增加的趨勢,隨后隨著添加量的增加,誘導氧化時間有所下降,化學合成抗氧化劑的作用效果顯著高于天然產物。樣品TBARS值隨著BSE添加量的增加呈現(xiàn)為降低的趨勢,BHT樣品TBARS值介于1.0%BSE和1.5%BSE之間,所以單純從抑制樣品TBARS值上出發(fā),BSE添加量介于1.0%和1.5%之間時,添加BSE與添加BHT效果一致。
2)添加物質的不同,樣品具有不同的顏色特征,具體為1.5%BSE樣品的*和*較高,BHT樣品具有較高的*;添加物質種類和數(shù)量的不同,樣品具有不同的揮發(fā)性組分,添加BSE樣品揮發(fā)性物質的種類呈現(xiàn)為下降的趨勢,但含量在添加量為1.5%時會有所升高,與脂質體系下的抑制誘導氧化作用趨勢相反;BHT樣品風味特征與其它樣品有著明顯差異,能夠通過主成分分析和線性判別分析進行區(qū)分。而BSE樣品在PC1和PC2方向上均有交集,在LD2方向上又有一定差異,說明BSE樣品風味特征既相似又能進行區(qū)分。
3)將BSE應用于肉制品加工,會對樣品的色澤、風味、揮發(fā)性風味物質等感官特征和TBARS值等理化特征產生影響,有助于樣品過氧化反應的控制;相比于BHT,添加1.5%BSE能達到同等抑制TBARS值的作用,且具有較為理想的*和*,*也與對照組較為相似。研究結果為廣式臘肉的風味改善、綠色加工工藝研究提供借鑒,為BSE等天然活性物質在肉制品加工中的應用研究提供參考。
[1] Descalzo A M, Insani E M, Biolatto A, et al. Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef[J]. Meat Science, 2005, 70: 35-44.
[2] Nakyinsiga K, Sazili A Q, Aghwan Z A, et al. Development of microbial spoilage and lipid and protein oxidation in rabbit meat[J]. Meat Science, 2015, 108: 125-131.
[3] Soladoye O P, Juárez M L, Aalhus J L, et al. Protein oxidation in processed meat, mechanisms and potential implications on human health[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(2): 106-122.
[4] Mckibbean J, Engeseth N J. Honey as a protective agent against lipid oxidation in ground turkey[J]. Journal of Agricultural and Food Chemistry, 2002, 50(3): 592-595.
[5] Taylor S L, Scanlan R A. Food Toxicology: A Perspective on the Relative Risks.[M]. Marcel dekker,inc, 1989.
[6] Mcneill J, Kakuda Y, Findlay C. Influence of carcass parts and food additives on the oxidative stability of frozen mechanically separated and hand-deboned chicken meat[J]. Poultry Science, 1988, 67(2): 270-274.
[7] Khalil A, Mansour E. Control of lipid oxidation in cooked and uncooked refrigerated carp fillets by antioxidant and packaging combinations[J]. Journal of Agricultural and Food Chemistry, 1998, 46, 1158-1162.
[8] Hayes J E, Allen P, Brunton N, et al. Phenolic composition and in-vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (L.), lutein, sesamol and ellagic acid[J]. Food Chemistry, 2010, 126, 948-955.
[9] Guerrarivas C, Vieira C, Rubio B, et al. Effects of grape pomace in growing lamb diets compared with vitamin E and grape seed extract on meat shelf life[J]. Meat Science, 2016, 116: 221-229.
[10] 劉文營. 茶多酚、甘草提取物、VE和鼠尾草對羊肉乳化香腸品質的影響[J]. 食品科學,2017,38(9):46-52. Liu Wenying. Effect of tea polyphenol, licorice extract, vitamin E and chia (L.) on the quality of mutton emulsion-type mutton sausage[J]. Food Science, 2017, 38(9): 46-52. (in Chinese with English abstract)
[11] Pintado T, Herrero A M, Jiménez-Colmenero F, et al. Strategies for incorporation of chia (L.) in frankfurters as a health-promoting ingredient[J]. Meat Science, 2016, 114: 75-84.
[12] Yu L, Scanlin L, Wison J, Schmidt G. Rosemary extracts as inhibitors of lipid oxidation and color change in cooked turkey products during refrigerated storage[J]. Jounal of Food Science, 2016, 67(2): 582-585.
[13] Bellés M, Alonso V, Roncalés P, et al. Effect of borage and green tea aqueous extracts on the quality of lamb leg chops displayed under retail conditions[J]. Meat Science, 2017, 129: 153-160.
[14] Jeróonimo E, Alfaia C M M, Alves S P, et al. Effect of dietary grape seed extract andL. in combination with vegetable oil supplementation on lamb meat quality[J]. Meat Science, 2012, 92: 841-847.
[15] Ahmed S T, Mun H S, Islam M M, et al. Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs[J]. Meat Science, 2016, 122: 7-15.
[16] Guerrarivas C, Vieira C, Rubio B, et al. Effects of grape pomace in growing lamb diets compared with vitamin E and grape seed extract on meat shelf life[J]. Meat Science, 2016, 116: 221-229.
[17] Valls J, Agnolet S, Haas F, et al. Valorization of Lagrein grape pomace as a source of phenolic compounds: Analysis of the contents of anthocyanins, flavanols and antioxidant activity[J]. European Food Research and Technology, 2017, 243(12): 2211-2224.
[18] Zhang Y, Yang L, Zu Y G, et al. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage[J].Food Chemistry, 2010, 118(3): 656-662.
[19] Juntachote T, Berghofer E, Siebenhandl S, et al. The antioxidative properties of Holy basil and Galangal in cooked ground pork[J]. Meat Science, 2006, 72(3): 446-456.
[20] 李君珂,劉森軒,劉世欣,等. 花椒葉多酚提取物對白鰱咸魚脂肪氧化及脂肪酸組成的影響[J]. 食品工業(yè)科技, 2015,36(15):109-113. Li Junke, Liu Senxuan, Liu Shixin, et al. Effect ofbungeanum Maxim.leaf extract on the lipid oxidation and fat acid composition of salted silver carp[J]. Science and Technology of Food Industry, 2015, 36(15): 109-113. (in Chinese with English abstract)
[21] Rampal G, Thind T S, Vig Ap, et al. Antimutagenic potential of glucosinolate-rich seed extracts of broccoli (L var.) [J]. International Journal of Toxicology, 2010, 29(6): 616-624.
[22] Kumari A, Sharma S And Vig A P. Antigenotoxic effects ofL. Var.aqueous seed extract on allium cepa root chromosomal aberration assay[J]. International Journal of Genetics, 2012, 2(2): 22-28.
[23] Shimoda H, Hirano M, Takeda S, et al. Glucosinolates and isothiocyanates from broccoli seed extract suppress protein glycation and carbonylation[J]. Functional Foods in Health and Disease, 2018, 8(1): 35-48.
[24] 賀雪華,李林,白登榮,等. 改進型城口臘肉貯藏過程中的品質變化及貨架期預測[J]. 食品科學,2017,38(11):249-255. He Xuehua, Li Lin, Bai Dengrong, et al. Quality variations and shelf life prediction of Chinese traditional bacon stored at different temperatures[J]. Food Science, 2017, 38(11): 249-255. (in Chinese with English abstract)
[25] 國家衛(wèi)生部. 食品添加劑使用標準:GB 2760-2011[S]. 北京:中國標準出版社,2011.
[26] 劉文營,戚彪,成曉瑜,等. 豬脂肪誘導氧化過程及添加迷迭香精油的抗氧化活性[J]. 肉類研究,2014,28(12):21-23. Liu Wenying, Qi Biao, Cheng Xiaoyu, et al. Synergistic inhibition of induced lipid oxidation in pork fat by rosemary essential oil[J]. Meat Science, 2014, 28(12): 21-23. (in Chinese with English abstract)
[27] Xia Q, Wang L, Xu C, et al. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro, bioaccessibility, as well as starch digestibility in brown rice (L.)[J]. Food Chemistry, 2017, 214: 533-542.
[28] Ganh?o R, Estévez M, Morcuende D. Suitability of the TBA method for assessing lipid oxidation in a meat system with added phenolic-rich materials[J]. Food Chemistry, 2011, 126: 772-778.
[29] Ganh?o R, Estévez M, Armenteros M, et al. Mediterranean berries as inhibitors of lipid oxidation in porcine burger patties subjected to cooking and chilled storage[J]. Journal of Integrative Agriculture, 2013, 12: 1982-1992.
[30] 劉文營,張振琪,成曉瑜,等. 干腌咸肉加工過程中品質特性及揮發(fā)性成分的變化[J]. 肉類研究,2016,30(1):6-10. Liu Wenying, Zhang Zhenqi, Cheng Xiaoyu, et al. Changes in quality characteristics and volatile components during the processing of dry-salted bacon[J]. Meat Research, 2016, 30(1): 6-10. (in Chinese with English abstract)
[31] 中華人民共和國質量監(jiān)督檢驗檢疫總局中國國家標準化管理委員會. 均勻色空間和色差公式:GB/T 7921–2008 [S]. 北京:中國標準出版社,2008.
[32] Wang Y, Li X, Jiang Q, et al. GC-MS analysis of the volatile constituents in the leaves of 14 compositae plants[J]. Molecules, 2018, 23(1): 166.
[33] Rahim E N A A, Ismail A, Omar M N, et al. GC-MS analysis of phytochemical compounds in syzygium polyanthum leaves extracted using ultrasound-assisted method[J]. Pharmacognosy Journal, 2018, 10(1): 110-119.
[34] 李迎楠,李享,賈曉云,等. 酶法制備血紅素對湘式臘腸色澤和揮發(fā)性風味的影響[J]. 肉類研究,2017,31(11):45-52. Li Yingnan, Li Xiang, Jia Xiaoyun, et al. Color and flavor analysis of Hunan-style sausages with added enzymatically prepared pig blood hemoglobin[J]. Meat Research, 2017, 31(11): 45-52. (in Chinese with English abstract)
[35] 韋仕靜,劉濤,葛亞中,等. 西蘭花酵素在發(fā)酵過程中生化指標變化及其抗氧化活性研究[J]. 現(xiàn)代食品科技,2017(8):123-129. Wei Shijing, Liu Tao, Ge Yazhong, et al. Study on changes in the biochemical indicators and antioxidant activity of broccoli enzyme during fermentation[J]. Modern Food Science and Technology, 2017(8): 123-129. (in Chinese with English abstract)
[36] 劉文營,成曉瑜,戚彪,等. 添加抗氧化劑對豬脂肪的誘導氧化影響[J]. 肉類研究,2015,29(10):6-9. Liu Wenying, Cheng Xiaoyu, Qi Biao, et al. Effects of adding antioxidants on induced lipid oxidation in lard[J]. Meat Research, 2015, 29(10): 6-9. (in Chinese with English abstract)
[37] Xu L, Yu X, Lei L, et al. A novel method for qualitative analysis of edible oil oxidation using an electronic nose[J]. Food Chemistry, 2016, 202: 229-235.
[38] Mancini S, Preziuso G, Bosco A D, et al. Effect of turmeric powder (L) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers[J]. Meat Science, 2015, 110: 93-100.
[39] Warner R D, Kearney G, Hopkins D L, et al. Retail colour stability of lamb meat is influenced by breed type, muscle, packaging and iron concentration[J]. Meat Science, 2017, 129: 28-37.
[40] Jones-Hamlow K A, Tavárez M A, Schroeder A L, et al.
Lipid oxidation, sensory characteristics, and color of fresh pork sausage from immunologically castrated pigs stored frozen for up to 12 weeks[J]. Journal of Food Science and Nutrition, 2016, 4(3): 355-363.
[41] Ni N, Wang Z, Wang L, et al. Reduction of sodium chloride levels in emulsified lamb sausages: The effect of lamb plasma protein on the gel properties, sensory characteristics, and microstructure[J]. Food Science and Biotechnology, 2014, 23(4): 1137-1143.
[42] Bowser T J, Mwavita M, Al-Sakini A, et al. Quality and shelf life of fermented lamb meat sausage with rosemary extract[J]. Open Food Science Journal, 2014, 8(1): 22-31.
[43] Scapin G, Schimdt M M, Prestes R C, et al. Effect of extract of chia seed () as an antioxidant in fresh pork sausage[J]. International Food Research Journal, 2015, 22(3): 1195-1202.
[44] 蘇世偉,王睿粲,郭順堂,等. 核桃酚類物質和蛋白間的相互作用及其抗氧化活性[J]. 農業(yè)工程學報,2016,32(22):309-314. Su Shiwei, Wang Ruican, Guo Shuntang, et al. Walnut phenolic compounds: Binding with proteins and antioxidant activities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 309-314. (in English with Chinese abstract)
[45] Martínez-Onandi N, Rivas-Ca?edo A, Nu?ez M, et al.Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham[J]. Meat Science, 2016, 111: 130-138.
[46] 王悅齊,吳燕燕,李來好,等. 抗氧化乳酸菌對發(fā)酵腌干帶魚脂肪氧化的影響及其主成分分析[J]. 食品科學,2017,38(8):231-238. Wang Yueqi, Wu Yanyan, Li Laihao, et al. Effect of antioxidant lactic acid bacteria on lipid hydrolysis and oxidation of dry-cured hairtail: A study using principal components analysis[J]. Food Science, 2017, 38(8): 231-238. (in Chinese with English abstract)
Addition of. seed water extract improving colour, flavour and anti-oxidation of cantonese cured meat
Liu Wenying, Li Xiang, Cheng Xiaoyu※
(100068,)
The meat products quality is influenced by the raw meat,ingredients, processing amd storage condition, and the auxiliary material addition scheme is the main determinant that is associated with lipid oxidation, protein oxidation, colour stability and flavour formation, while the colour information, oxidation states and flavour characteristic often need to be simultaneously considered. Lipid oxidation of meats during processing and storage has been related to its deterioration in terms of sensory characters, processability and nutritional quality, which would remarkably affect consumers’ perception, and this deterioration sometimes could be relieved by innovative supplement which with antioxidant activity. The appearance of natural antioxidants has not only avoided the potential toxic effects of chemical anti-oxidants, but also improved the products quality to a certain extent. With the development of modern meat processing industry, the applicability of innovative materials in traditional food processing also need to be studied. In order to evaluate the antioxidant activity ofL. seed extract (BSE) in vitro and the application effect in cantonese cured meat, a verification experiment was executed, meanwhile the effect of butylated hydroxytoluene (BHT) addition was also analyzed. Six treatments were carried out, CT (basic formula), 0.2% BSE (basic formula + 0.2% BSE), 0.5% BSE (basic formula+ 0.5% BSE), 1.0% BSE (basic formula + 1.0% BSE), 1.5% BSE( basic formula + 1.5% BSE) and BHT (basic formula + 0.02% BHT) respectively. The ferric reducing ability of plasma results showed that the total antioxidant activity of BSE in vitro increased as the adding amount increasing (<0.05), while the inhibition of induced oxidative effect in the lipid system showed a tendency to decrease after increased to 5.09±0.04 h, the inhibition was significantly reduced (<0.05) at 1.5% BSE addition, compared with 1.0% addition. Within the BSE products, the thiobarbituric acid reactive substance (TBARS) value appeared to be increasing after decreasing at 1.0% BSE addition, similar to inhibition of induced oxidation, and the TBARS value of BHT treatments fell to the value between 1.0% and 1.5% BSE addition. Based the outcome of principal component analysis(PCA) and linear discriminant analysis(LDA), the results showed that the principal component could represent the flavor characteristics of the individual products, in particular, especially the BHT product was obviously different from the other products. The 1.5% BSE treatment had the highest lightness (*) and yellowness (*) value, and the redness (*) value of 1.5%BSE was similar to CT and other BSE treatment, while the BHT treatment had an advantage in* value. Both types and quantities of volatile substances were vary, the types decreased as the content of BSE increased, while the quantities of volatile substances showed a trend of first decreasing and then increasing. The 1.5%BSE product with the desired* and* value, the TBARS value was less than BHT treatment (>0.05), and there was no obvious difference in flavor from traditional processing products. From the analysis of sensory quality and physical characteristics, 1.5% BSE addition would be the ideal alternative in cantonese cured meat processing.
extraction; oxidation; meats;L. seed extract; antioxidant capacity; cantonese cured meat; sensory characteristics
10.11975/j.issn.1002-6819.2018.21.036
TS202.1
A
1002-6819(2018)-21-0288-07
2018-05-23
2018-09-12
國家重點研發(fā)計劃專項(2016YFD0401503)
劉文營,高級工程師,主要從事畜產品加工科學研究。Email:skyocean_2004@163.com。中國農業(yè)工程學會高級會員:劉文營(E041201016S)。
成曉瑜,教授級高級工程師,主要從事畜產品加工科學及產業(yè)化研究。Email:chxyey@aliyun.com
劉文營,李 享,成曉瑜.添加西蘭花種子水提物改善臘肉色澤和風味提高抗氧化性[J]. 農業(yè)工程學報,2018,34(21):288-294. doi:10.11975/j.issn.1002-6819.2018.21.036 http://www.tcsae.org
Liu Wenying, Li Xiang, Cheng Xiaoyu.Addition of. seed water extract improving colour, flavour and anti-oxidation of cantonese cured meat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 288-294. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.036 http://www.tcsae.org