黃健熙,黃 海,馬鴻元,卓 文,黃 然,高欣然,劉峻明,蘇 偉,李 俐,張曉東,朱德海
?
遙感與作物生長模型數據同化應用綜述
黃健熙1,2,黃 海1,馬鴻元1,卓 文1,黃 然1,高欣然1,劉峻明1,2,蘇 偉1,2,李 俐1,2,張曉東1,2,朱德海1,2
(1. 中國農業大學土地科學與技術學院,北京 100083;2. 農業農村部農業災害遙感重點實驗室,北京 100083)
遙感是獲取大面積地表信息最有效的手段,在農業資源監測、作物產量預測中發揮著不可替代的重要作用;作物生長模型能夠實現單點尺度上作物生長發育的動態模擬,可對作物長勢以及產量變化提供內在機理解釋。遙感信息和作物生長模型的數據同化有效結合二者優勢,在大尺度農業監測與預報上具有巨大的應用潛力。該文系統綜述了遙感與作物生長模型的同化研究,概述了遙感與作物生長模型數據同化系統的構建,在歸納國內外研究進展的基礎上,總結了當前主流同化方法的特點以及在不同條件下的同化效果。進而具體分析影響同化精度的關鍵環節,明確了相關科學概念,并相應指出改善精度的策略或者方向。最后從多參數協同、多數據融合、動態預測、多模型耦合以及并行計算環境5個方面展望了遙感與作物生長模型數據同化的未來研究重點和發展趨勢,同時結合農業應用現實需求,介紹一種數據同化與集合數值預報結合的應用框架,為大區域、高精度同化研究提供新的思路與借鑒。
作物;遙感;模型;作物生長模型;數據同化;農業監測;產量預報
遙感技術因其宏觀性、直觀性和大面積獲取能力等特點在各個領域中應用廣泛。隨著遙感技術的長足發展,特別是時間、空間、光譜分辨率的不斷提升,為全球陸地自然資源、大氣和海洋監測等提供了重要的技術支撐。隨著定量遙感反演算法和產品的日益完善,如葉面積指數(leaf area index,LAI)、蒸散發(evapotranspiration, ET)、土壤水分(soil moisture,SM)、吸收性光合有效輻射(fraction of absorbed photosynthetically active radiation,FAPAR)及地上生物量(aboveground biomass,AGB)等關鍵生物理化參數的定量產品,在區域尺度的農作物監測中發揮了重要作用。
作物生長模型是根據作物品種特性、氣象條件、土壤條件以及作物管理措施,采用數學模型方法描述作物光合、呼吸、蒸騰、營養等機理過程,能夠以特定時間步長動態模擬作物生長和發育期間的生理生化參數、結構參數以及作物產量,定量地描述光、溫、水、肥等因子以及田間栽培和管理措施對作物生長和發育的影響[1-5]。在單點尺度上,基于作物光合、呼吸、蒸騰、營養等機理過程的作物生長模型依靠其內在的物理過程和動力學機制,可以準確模擬作物在單點尺度上生長發育的時間演進以及產量的形成動態過程。
利用數據同化技術把遙感反演參數信息融入到作物機理過程模型是當前改進區域作物生長模擬精度的重要途徑[6-8]。當作物生長模型應用到區域尺度時,地表、近地表環境非均勻性決定了作物模型中的初始條件、土壤參數、作物參數、氣象強迫因子空間分布的不確定性和獲取資料的困難性。衛星遙感具有空間連續和時間動態變化的優勢,能夠有效解決作物模型中區域參數獲取困難這一瓶頸[9-10]。然而,由于受衛星時空分辨率等因素的制約,遙感對地觀測還不能真正揭示作物生長發育和產量形成的內在過程機理、個體生長發育狀況及其與環境氣象條件的關系,而這正是作物模型的優勢所在。數據同化技術通過耦合遙感觀測和作物模型,能實現兩者的優勢互補,提高區域作物生長過程模擬能力。將遙感信息引入作物生長模型,是促進大面積作物長勢監測和產量預測向機理化和精確化方向發展的有效技術途徑。
本文從現有文獻中整理歸納,分析作物模型與遙感數據同化系統的基本構架,總結當前研究中模型、數據、方法等現狀,明確同化系統中影響精度的關鍵環節和重點內容,討論未來研究的技術要點和發展趨勢。
數據同化的研究思想最早是由Charney等[11]在1969年提出,數據同化方法被逐漸應用于大氣環流模式,例如數值天氣預報、海洋預報模式、陸面模式等地學模擬系統。數據同化是集成觀測和模式/模型這2種基本科學研究手段的重要方法,它能夠將多源的、時間/空間不完整的觀測整合到一個演進的作物生長過程模型中,從而更加準確一致地估計作物生長過程的各個狀態變量。一般來說,一個數據同化系統均包含3個基本組成部分:動態模型、觀測數據和同化算法。
圖1為一個典型遙感與作物模型數據同化系統的流程圖。作物生長模型選擇WOFOST作物生長模型,在單點樣本尺度(田間尺度)進行充分觀測獲得模型輸入參數。在參數率定和模型本地化的基礎上,WOFOST能夠對作物的生長發育過程以及LAI、SM、生物量、單產進行較為準確的模擬。同時基于貝葉斯理論的馬爾科夫鏈蒙特卡洛方法(Markov chain Monte Carlo, MCMC),獲得這些參數的后驗分布,實現對參數的估計,同時參數的后驗分布能夠定量表達在已有觀測條件下模型參數的不確定性。光學和雷達遙感能定量反演出關鍵的農作物參數,例如生育期(development stage, DVS)、LAI、ET、SM、FAPAR、AGB等。因此,引入大區域的遙感參數、借助數據同化技術,在區域每個格網上對狀態變量進行優化或者經過多次迭代優化出一套模型參數,實現對區域作物模型的優化,提高區域作物單產的模擬。特別通過耦合短臨天氣預報數據和作物生長模型,可以實現對未來時段農作物產量的預測。

注:MCMC、4Dvar、EnKF、SAR、DVS、LAI、ET、SM、FAPAR、AGB、CC分別表示馬爾科夫鏈蒙特卡洛方法、四維變分、集合卡爾曼濾波、合成孔徑雷達、生育期、葉面積指數、蒸散發、土壤水分、吸收性光合有效輻射、地上生物量、冠層覆蓋度。下同。
數據同化研究中,將動態模型(作物生長模型)與觀測(遙感或地面試驗)耦合的同化算法發揮著核心的作用,同化算法的性能直接影響著同化系統的運行效率和精度。基于代價函數的參數優化方法和基于估計理論的集合濾波方法是2類主要的現代數據同化方法。已有眾多學者對遙感與作物模型的同化策略進行了系統性的綜述[6,12-14],本文依據代表性文獻的歸納整理,進一步分析2類同化方法的技術要點、研究進展以及內在差異等。
參數優化方法迭代調整作物模型中與生長發育和產量形成密切相關的、常規方式難以獲得的參數或初始條件,最小化遙感觀測值與模型模擬值之間的差異,以達到優化作物模型的目的(如圖2所示)。參數優化算法精度主要取決于同化變量、優化算法以及目標函數(或遺傳算法中的適應度函數)形式。用于作物模型同化的優化算法包括單純型搜索算法、最大似然法、復合型混合演化算法(shuffled complex evolution method developed at the University of Arizona, SCE-UA)、Powell 共軛方向法、粒子群算法(particle swarm optimization, PSO)、遺傳算法、模擬退火法等;代價函數的構建有均方根誤差、最小二乘、三維變分(3DVar)、四維變分(4DVar)等形式。關于參數優化方法的代表性研究如表1所示。

圖2 參數優化法同化原理示意圖
順序數據同化算法又稱為濾波算法,其算法核心是在機理過程模型的動力框架內,融合來自于不同分辨率的遙感觀測信息,讓機理過程模型和各種觀測算子集成為不斷地依靠外部觀測而自動調整模型軌跡,并且減小誤差的預報系統(如圖3所示)。順序濾波使得模型模擬的狀態變量不斷更新為最優預報值,是一種時間連續且可應用于實時模擬的數據同化方法。常用到的順序濾波算法有擴展卡爾曼濾波(extended Kalman filter, EKF)、集合卡爾曼濾波(ensemble Kalman filter, EnKF)和粒子濾波(particle filter, PF)等順序同化算法。EnKF具有處理非線性觀測算子的能力,并解決了同化過程中預報誤差協方差求解困難的瓶頸,是順序同化方法中的重要方法。EnKF假定觀測和模型為高斯分布,而PF則可以假定觀測和模型為非高斯分布,已經成為順序同化方法中最具潛力的方法。關于順序濾波同化的代表性研究如表2所示。

表1 參數優化法同化的主要研究
注:“A+B”形式的作物模型名稱表示作物模型與輻射傳輸模型的耦合,其中A是作物模型名稱,B是輻射傳輸模型名稱; LNA、TSAVI、NDVI、EVI、、、CNA分別表示葉片氮積累量、轉換型土壤調整指數、歸一化植被指數、增強型植被指數、后向散射系數、波段反射率、冠層氮素累積量。下同。
Note: Crop growth model names in the form of “A+B” represent the coupling of crop growth model and the radiation transfer model, where A is the name of the crop model and B is the name of the radiation transfer model; LNA, TSAVI, NDVI, EVI,,and CNA respectively represent leaf nitrogen accumulation, transformed soil adjusted vegetation index, normalized vegetation index, enhanced vegetation index, backscatter coefficient, band reflectance, and canopy nitrogen accumulation. The same below.

圖3 順序濾波法同化原理示意
綜上所述,在遙感與作物生長模型的數據同化研究中,大區域的同化應用的衛星遙感數據以MODIS為主,中等區域尺度上主要選擇Landsat TM, ETM+及OLI等遙感數據。作物模型以WOFOST、CERES等使用最為廣泛,作物對象主要選擇小麥、玉米和水稻等糧食作物。LAI是遙感與作物模型同化中最常用的同化變量。此外,也有研究通過耦合作物模型與輻射傳輸模型,直接同化遙感觀測和耦合模型模擬的反射率、植被指數或后向散射系數。總體上,產量的估算是最主要的應用目標。

表2 順序濾波法同化主要研究
注:VTCI表示條件溫度植被指數。
Note: VTCI represent vegetation temperature condition index.
方法上,參數優化方法依據遙感觀測在同化單元上重新估計模型的一些參數或初始條件,從而實現模型在空間上的有效拓展。雖然代價函數形式和參數優化方法各異,但參數優化精度與遙感觀測的頻率和時間點密切相關[15,19,23]。而當作物模型與輻射傳輸模型耦合時,參數優化的效果很大程度依賴于輻射傳輸模型部分的參數精度,尤其在大區域尺度上,這些參數具有較大空間變異性[15]。4DVar是當前參數優化方法主流代表,其代價函數描述了模型初始參數的優化值與初始值的距離以及同化變量的遙感觀測值和模擬值之間的距離。4DVar能夠更好地同化異步觀測數據,被廣泛認為是一種有效而具有競爭力的同化方法[30,66-68];其主要缺點是在解析法來解時需要伴隨模式的計算,對于作物生長模型這樣的復雜系統,往往帶來很大的計算難度和不確定性[30,32-33,66,69]。
以EnKF為代表的順序濾波算法通過將冠層的連續觀測信息納入模型模擬,以減少被同化的狀態變量的誤差,從而提高模型模擬的準確性。EnKF的優點在于假設觀測和模擬都存在誤差,同時相比于其他同化算法,EnKF公式簡潔,計算高效,更容易表達出作物生長模型非線性、高維度的特性[57,59,70]。總的來說,在具有高質量觀測值進行模型標定的情況下,EnKF在相對較小的研究區域上能夠取得較高的產量模擬精度[27,46];在中等研究區域,EnKF使用中低分辨率遙感數據(如MODIS LAI或者微波遙感反演的土壤水分等)進行同化估產也能夠具有較好的表現[58,60]。但是當同化的狀態變量(如LAI)與目標模擬產物(如產量、土壤水等)相關性較弱時,EnKF并不一定會提高同化的準確性[59,61]。尤其對于產量而言,其與氣候、土壤、品種、管理等因素密切相關,僅依靠一兩個狀態變量的更新,并不能有效實現對模型模擬偏差的糾正[55,57]。此外,EnKF同化表現也取決于遙感觀測質量、模型及觀測不確定性的量化程度[71]。
參數優化方法與順序濾波方法的區別在于,前者用整個同化窗口內的觀測值來重新調整模型參數,而后者的觀測值是順序作用于模型,每一次后續的觀測值只會影響從當前狀態之后的模型變化性質。有研究表明,在短同化窗口內,EnKF可以取得更高的分析精度,而在長同化窗口,EnKF與4DVar的具有相似的準確性[70]。但對于不同的模型,同化結果可能存在差異,比如在WOFOST模型的同化研究中,EnKF方法同化LAI會引起“物候漂移”現象進而降低同化精度,而參數優化方法則能夠取得較好結果[55]。
同化單元(最小分辨率)的大小選擇常常取決于要解決的應用問題。例如,全球尺度的模擬一般需要10~50 km分辨率;國家尺度的模擬需要1~10 km分辨率;區域尺度模擬需要10 m~1 km分辨率。此外,數據同化單元大小也取決于作物模型輸入參數(氣象要素、作物和土壤以及田間管理)和遙感反演參數的時空分辨率。同化單元越小,空間差異性越顯著。但同化單元的減小不會一直提高同化精度,而是存在一個最優同化單元,并與農田地塊大小有緊密聯系。通常,更細的同化單元會帶來巨大的計算壓力。因此,需要研發更高效的同化策略和適合于高性能計算的組織架構與模式。與格網同化單元不同的是,劃分均質地塊單元,基于單元進行同化,提高同化執行效率的策略,是未來遙感與作物生長模型數據同化值得探索的一個研究方向[22]。
準確評估遙感反演參數的不確定性,并將其考慮到數據同化之中,對于提高數據同化系統的精度具有重要作用。隨著定量遙感反演算法及產品不斷完善,反映作物生長狀態的關鍵生物理化參數,如LAI、ET、SM、FAPAR和AGB等,其獲取途徑越來越豐富,精度越來越高,能夠不斷滿足作物生長模型同化的需求。參數反演精度取決于遙感數據源和反演方法,前者可分為單一遙感數據和多源遙感數據,后者通常包含經驗模型、輻射傳輸模型、神經網絡模型等。以LAI為例,MOD15數據集以MODIS為數據源,以三維輻射傳輸模型為主、經驗模型為輔,生成覆蓋全球的時間分辨率8 d、空間分辨率1 km的LAI產品[72],GEOV1數據集以VEGETATION為數據源,融合MOD15和CYCLOPES為訓練數據,訓練神經網絡,生成覆蓋全球的時間分辨率為10 d、空間分辨率為1/112°的LAI產品[73]。由于植被結構和生物物理特性的多樣性、冠層和大氣輻射傳輸過程的復雜性,植被參數和遙感觀測間的轉換仍存在較大的不確定性[74]。例如,有研究表明MODIS LAI產品對農作物LAI低估約33%~50%[75-76];MODIS ET產品在森林地區與實測值較為一致,農田地區的一致性較差[77],在流域或站點尺度上,其與實測值的相關系數大約在0.7左右[78-79]。因而遙感科學領域的真實性檢驗技術的發展,對遙感與作物模型數據同化系統中遙感反演參數的不確定性評估具有重要影響。
作物生長模型的不確定性主要來源于模型結構、模型參數以及氣象驅動數據。模型結構的不確定性主要體現為模型對光合作用、水肥、營養和土壤水平衡等過程難以定量和準確描述,同時對諸如病蟲害、極端災害天氣、漬災等減產因素影響未在作物模型中考慮,也影響作物生長發育和結果輸出的模擬效果。模型參數的不確定性主要反映在模型中部分初始田間管理條件和參數難以直接獲取,傳統的參數估計方法的目標是在一些特定的模型結構內找到一組最優參數[80]。例如,研究表明約一半的研究者采用“試錯法”進行模型標定[81],即依據一定數量的實測值,通過調整幾個特定參數,當模型模擬與實測的誤差達到一定要求時,則以此時的參數作為標定參數,此方法具有較大主觀性。一些學者通過構建反映模型模擬值與實際觀測值差異的目標函數,通過最小化其差異,從而獲得模型參數的估計值[82-83]。Liu[84]調整CERES-Maize模型的物候系數,直到模擬與觀測的物候日期相一致,以實現參數估計。Thorp等[85]計算不同生長季內CERES-Maize模型模擬產量與實際產量的均方根誤差(RMSE)作為目標函數,采用模擬退火算法(simulated annealing optimization algorithm)實現對模型參數的自動化估計。在復雜的過程模型中,不存在精確的反解,因此依靠觀測結果構建的目標函數或者適應度函數,通過優化算法只得到唯一的參數估計是不可行的[86]。基于貝葉斯理論的馬爾科夫鏈蒙特卡洛算法(MCMC)能夠求得模型參數的后驗分布,因而得到越來越多的應用[87-89]。氣象數據是模型中驅動作物生長發育的重要數據,為了獲得空間連續、時間連續的氣象驅動數據集,往往需要使用插值方法得到區域范圍氣象數據。然而降水、風速等非連續宏觀現象空間分布不均,使用插值方法的可靠性一直存在爭議。另一方面,在進行作物產量預測預報時,氣象預報數據的不確定性也將直接影響作物生長的模擬效果,是制約模型實際應用的瓶頸之一。目前的研究主要是采用歷史天氣數據、天氣發生器或數值預報作為預報期驅動數據[90-91]。由于大氣系統高度非線性、混沌的特征,氣候和天氣預報的不確定性是必然的[92-93],而依賴于氣象驅動的作物生長模型也是如此。
在數據同化策略方面,順序濾波同化效率高,但也存在不足之處。首先順序濾波同化直接修改狀態變量(例如:LAI或SM),而時間序列LAI的變化容易導致作物生育期改變,因此,同化LAI通常會引起一定程度的“物候漂移”,導致同化精度不如參數優化方法[55]。其次諸如各種濾波算法如卡爾曼濾波等方法中對于模型和觀測的誤差隱含著預先假設,即模型和觀測都存在隨機誤差而不存在系統偏差,而實際上區域化的模型運行難以滿足這一條件。因此,濾波同化往往會迅速收斂至模型或觀測,使得數據同化失去效果。更為普遍的是,作物模型和遙感觀測存在尺度差異,這種差異已經不能夠作出沒有系統偏差的假設,因此在順序濾波中觀測信息只能選擇站點尺度[94]、或者利用其他手段進行觀測數據的修 正[45,51],這限制了順序濾波的區域化應用。
通過構建各種形式的代價函數來優化參數的同化方法可以在一定程度上減小模型觀測尺度不一致帶來的系統偏差,而且沒有順序濾波引起物候漂移的缺點,因此,在作物模型同化領域應用中得到了廣泛的應用。然而,優化方法也存在一些制約因素。首先,和順序濾波方法相比,優化法的數據同化需要大量迭代計算搜索最優參數集合,而由于模型非線性的特征無法應用解析法,使得同化系統的運行效率偏低,并且隨著參數的增加所需的搜索次數呈指數增長;算法的選擇和代價函數的設計雖然能夠緩解該問題,但隨著區域尺度同化需求的增加,計算效率始終是優化方法的主要瓶頸。其次,優化算法和順序濾波的最主要的差異是同化的時間周期,順序濾波中同化的模擬是實時進行的,隨著觀測值的輸入不斷向前分析更新,當模擬結束時同化也隨之結束,而優化方法是由算法在外部調用作物模型進行多次循環模擬,每一次迭代都需要完整運行整個時間周期,這使得優化法在進行實時模擬預報時不如順序濾波靈活高效。
由于農田表面存在復雜性,在某一尺度上觀測到的地物性質、過程原理、形成規律,在另一尺度上可能一致、可能相似,也可能無效而需要進行修正,加之遙感具有多空間分辨率的數據特點,從定量遙感出發的地學描述必然存在多尺度問題,即遙感的尺度效應[95-98]。作物模型輸入參數的空間分辨率格網大小對模型輸出結果會有不同的精度,這是作物模型本身的尺度效應。遙感與作物模型數據同化系統中的尺度效應是指,遙感反演參數和作物模型模擬的參數(LAI、ET、SM以及AGB等)之間的差異以及不匹配。在遙感與作物模型數據同化方法的應用過程中:一方面,由于作物生長模型中不同參數的區域化方法不同,導致區域參數空間尺度不一致,解決不同空間尺度區域參數的空間匹配問題是實現局地模型空間尺度擴展和區域應用的前提;另一方面,由于地表空間異質性以及作物生長模型的非線性特點,導致尺度效應明顯,遙感觀測數據與作物生長模型變量之間的尺度不匹配仍是一個難題。因此,空間尺度轉換是遙感與作物模型數據同化系統應用到區域尺度需解決的關鍵科學問題。
國內外學者針對空間尺度轉換已開展了大量研究,思路主要有兩個:一是模型整體的尺度轉換,即對特定尺度下建立的物理定律、定理、模型以及概念進行全面修正[99-102];二是模型參數(或變量)的尺度轉換,即對不同觀測尺度(空間分辨率)下所獲取的地表生物物理參數進行尺度差異校正[103-108]。尺度轉換過程可分為向上尺度變換(將高空間分辨率信息轉換成低分辨率的過程)和向下尺度變換(將低空間分辨率信息轉換成高分辨率的過程)。然而,通過向下尺度變換方法對空間異質性進行建模是一個極其復雜的過程,需要嚴格的近似和先驗知識,不易于程序操作和實際應用[109]。因此,面向遙感與作物模型數據同化,一種常用的尺度不匹配解決方案是模型參數的升尺度轉換,即將物候信息與低空間分辨率的遙感數據結合起來,并通過中高分辨率影像反演而得的相對精確值,調整作物生長模型生成的同化參數軌跡,從而提高同化精度[27]。
LAI是遙感與作物生長模型中最常用的同化變量,由于LAI是一個農作物光溫水肥多要素交互作用后的綜合指標,同化LAI難以定量描多要素對作物生長發育的影響。LAI能刻畫冠層的生長和發育過程,決定了葉片光的截獲和光合作用的大小。SM和ETa/ETp反映了土壤水的狀況和作物脅迫的程度。因此,在雨養區域,聯合同化LAI和SM,LAI和ETa/ETp能修正冠層生長發育和土壤水平衡過程。包姍寧等研究表明,在水分脅迫模式下, 同化ET和LAI雙變量能取得比同化ET或LAI單變量更高的精度[28],張樹譽等同化LAI和條件植被溫度指數(vegetation temperature condition index, VTCI)提高了模型的估產精度[65]。值得一提是,在同化變量的選擇方面,需要考慮不同變量之間的相關性,有些變量之間的相關性很強,選擇其中一個變量即可,例如LAI與FAPAR, SM和ETa/ETp。
光學數據易受云雨影響,常導致關鍵生育期監測數據缺失,在時間和信息量上已不能完全滿足遙感與作物模型數據同化的需求。微波遙感具有全天候工作的特性,且具有一定的穿透性,能夠提供多云多雨天氣條件下的農田地表信息,同時彌補了光學數據在時效性和全天候的不足。研究表明,LAI、生物量等農學參數與SAR后向散射系數顯著相關[110-113],這為SAR數據與作物生長模型的同化奠定了理論基礎。未來,聯合光學數據和微波遙感數據進行數據同化工作,將是遙感與作物模型數據同化的趨勢。目前歐洲航天局哥白尼計劃(GMES)中的地球觀測衛星哨兵1號(Sentinel-1)和哨兵2號(Sentinel-2)為此提供了較為理想的數據來源。其中哨兵1號載有C波段合成孔徑雷達,不受光照與氣候條件限制,可提供全天時、全天候的連續影像;而哨兵2號是目前唯一具有三個紅邊波段的民用觀測衛星,在大區域的農作物監測方面具有較大的應用潛力。兩者的結合,能夠提供高重訪周期及分辨率的大區域監測數據,很大程度上滿足遙感與作物模型數據同化系統的需求。
現有的作物模型與遙感數據的同化研究絕大部分是在“重現”歷史作物生長過程,即利用往年實測的整個作物生育期氣象數據進行驅動模型。這種往往屬于事后的產量監測(估測),因此,在作物生育期內已有的氣象觀測數據以及年型的分析上,通過引入未來時段的天氣預報數據,使得作物生長模型具有預測能力,實現提前半個月到1個月的產量預測。
傳統的作物模型運行過程只是輸出數據到輸出數據的單一映射,無法提供模型模擬的不確定性信息。作物模型本身以及輸入參數、氣象驅動存在著不確定性,如果以集合的思想將作物模型放入一個外部框架內,用不同集合預報數據驅動模擬的結果作為集合成員,可以使模擬結果的集合代表其概率分布,最終將單一數值的模擬輸出轉換為概率分布,實現作物產量的概率預測。
作物產量的同化預估也是農業應用的現實需求,本文基于已有研究[27,114-115],介紹一種數據同化與集合數值預報結合的應用框架。以WOFOST模型為例,通過與PROSAIL模型耦合直接實現與中高分辨率遙感影像(例如Sentinel-2影像)進行同化。為降低高分辨率遙感同化引起的海量計算壓力,引入一種“分塊聚類”策略,即:1)在作物生長季節將遙感影像按時間序列疊加在一起,并將其裁剪為數個網格單元(比如10 km′10 km);2)對分塊后的全生長季時間序列反射率進行聚類分析,每個網格單元被聚類為指定數目類別(比如40個),然后為每個聚類類別分配此類別中所有像素的平均反射率值作為該類別的反射率值;3)對網格單元中的所有聚類運行數據同化算法,從而為網格單元中每個聚類類別獲得同化的產量;4)使用同化后每個聚類的產量和聚類分析圖恢復出空間上的產量分布圖,從而獲得了原高空間分辨率下的產量空間分布。氣象數據由播種日至預報時刻的氣象數據觀測、TIGGE集合預報[116-117]、與集合預報成員最相似歷史年份氣象資料3部分拼接而成,在模型標定的基礎上,驅動整個生育期的模型運行,并實現由集合預報數據得到作物產量的概率預報。
目前主流的作物生長模型有CERES、WOFOST、APSIM、AquaCrop、STICS等,由于作物實際生長的機理過程的復雜性,單一的作物生長模型往往根據不同應用需求目的,對作物生長多過程的模擬各有側重。例如CERES模型以光能因子為主要驅動,通過不同模塊集成對不同作物進行模擬[3];WOFOST模型以CO2同化作為關鍵模擬,側重于產量的形成和定量描述[2];在WOFOST基礎上開發的SWAP模型則更細致對土壤水分進行模擬,在土壤水平衡過程模擬上具有優勢[118];APSIM模型以土壤水、鹽作為主要驅動,在模擬土壤要素對作物生長的影響上得到了廣泛驗證[119];AquaCrop是典型的土壤水分驅動模型,強調于水分脅迫對作物產量形成的影響[4];STICS模型[120]則較好地考慮了管理因素對作物生長的影響。因此,集成與整合多個作物模型,實現不同作物模型在多過程模擬中的優勢互補,能更為準確模擬作物生長與土壤、氣象、水肥以及管理措施等的交互影響。國際上,多作物模型集合研究已經取得了一些進展[121-122]。特別是將集合預報的技術引入到多作物模型中,有望能進一步提高作物生長模型在不確定性條件下的預測模擬精度。
傳統的遙感與作物模型數據同化系統中所有的輸入參數,是以文件系統的形式進行存儲和管理。對輸入輸出的讀寫效率較低,對于大區域的海量計算具有局限性。GPU在浮點運算和并行計算方面相對于CPU有著巨大的優勢,采用GPU模式可以大幅提高計算速度[123]。GPU加速能提高計算速度,卻對于復雜邏輯計算效率不高,且代碼編寫調試復雜。基于Hadoop MapReduce實現的分布式算法能夠在批量處理數據的任務中相對于單機實現的算法有極大的性能優勢[124]。然而,在許多迭代計算的任務中,每一次迭代過程的中間數據集都需要從硬盤中加載,如此頻繁的IO操作會消耗大量時間,限制了基于MapReduce在多次迭代算法上的速度性能優勢。將作物生長模型輸入參數以柵格數據的形式存儲到大數據環境下(例如HBase),在同化過程中動態生成作物模型的輸入參數,同時采用SPARK的內存計算模式實現同化過程中需要的多次迭代過程,能極大提高計算效率[125],滿足全國尺度遙感與作物模型數據同化系統的快速計算要求。值得一提的是,基于谷歌地球引擎(Google Earth Engine, GEE)強大的計算資源和豐富的遙感數據[126],在GEE平臺下實現遙感與作物模型數據同化系統,能極大提升在10~30 m中等分辨率尺度的同化模型計算效率,為大區域范圍的地塊尺度的遙感同化產量預測提供了有效的技術途徑,也將是遙感與作物模型同化應用的重要發展方向。
當前遙感與作物生長模型的同化研究在模型、數據和算法上已經相對成熟,但隨著近年來對地觀測技術不斷發展,以及考慮到農業應用在時間、空間上的現實需求,同化更豐富類型、更高分辨率的遙感數據對現有策略存在較大挑戰。因而未來在完善和創新同化系統架構的同時,也需要進一步提高性能與效率。
1)農業系統的復雜性決定了遙感與作物生長模型同化的較大不確定性,需要通過模型參數優化、遙感定量反演、數據同化算法等關鍵技術的共同發展,才能進一步提高同化系統精度。
2)為更精確描述大區域作物生長狀態、滿足服務農業生產的實際需求,多參數協同、多數據融合、動態預測以及多模型耦合成為遙感與作物生長模型數據同化系統的必然發展趨勢。
3)密集的計算是限制遙感與作物生長模型數據同化大區域應用精度的主要因素之一,基于大數據環境的同化系統構建為提高同化效率提供了可行方案。此外, GEE平臺的出現與發展將進一步滿足數據同化系統的并行計算要求,將是未來同化研究的重點方向。
[1] Williams J R. The EPIC crop growth model[J]. Transactions of the ASAE, 1989, 32(2): 497-511.
[2] Diepen C A, Wolf J, Keulen H, et al. WOFOST: A simulation model of crop production[J]. Soil Use & Management, 2010, 5(1): 16-24.
[3] Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3): 235-265.
[4] Theodorec H, Lee H, Pasquale S, et al. AquaCrop: The FAO crop model to simulate yield response to water[J]. Agronomy Journal, 2009, 101(3): 426-459.
[5] Moulin S, Bondeau A, Delecolle R. Combining agricultural crop models and satellite observations: From field to regional scales[J]. International Journal of Remote Sensing, 1998, 19(6): 1021-1036.
[6] Dorigo W A, Zurita-Milla R, de Wit A J W, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(2): 165-193.
[7] 趙艷霞,周秀驥,梁順林. 遙感信息與作物生長模式的結合方法和應用:研究進展[J]. 自然災害學報,2005,14(1):103-109. Zhao Yanxia, Zhou Xiuji, Liang Shunlin. Methods and application of coupling remote sensing data and crop growthmodels: Advance in research[J]. Journal of Natural Disaster, 2005, 14(1): 103-109.(in Chinese with English abstract)
[8] 邢雅娟,劉東升,王鵬新. 遙感信息與作物生長模型的耦合應用研究進展[J]. 地球科學進展,2009,24(4):444-451. Xing Yajuan, Liu Dongsheng, Wang Pengxin. Advances of the coupling application of remote sensing information and crop growth model[J]. Advanced Earth Sciences, 2009, 24(4): 444-451. (in Chinese with English abstract)
[9] 吳蕾,柏軍華,肖青,等. 作物生長模型與定量遙感參數結合研究進展與展望[J]. 農業工程學報,2017,33(9):155-166. Wu Lei, Bai Junhua, Xiao Qing, et al. Research progress and prospect on combining crop growth models with parameters derived from quantitative remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 155-166. (in Chinese with English abstract)
[10] Plummer S E. Perspectives on combining ecological process models and remotely sensed data[J]. Ecological Modelling, 2000, 129(2/3): 169-186.
[11] Charney J G, Halem M, Jastrow R. Use of incomplete historical data to infer the present state of the atmosphere (Incomplete historical data to infer state of atmosphere based on global circulation model, noting tradeoff of temperature for wind and time for space)[J]. Journal of the Atmospheric Sciences, 1969, 26: 1160-1163.
[12] Liang S. Quantitative Remote Sensing of Land Surfaces[M]. New York: John Wiley & Sons, 2004.
[13] Lewis P, Gómez-Dans J, Kaminski T, et al. An earth observation land data assimilation system (EO-LDAS)[J]. Remote Sensing of Environment, 2012, 120(120): 219-235.
[14] Jin X, Kumar L, Li Z, et al. A review of data assimilation of remote sensing and crop models[J]. European Journal of Agronomy, 2018, 92: 141?152.
[15] Guérif M, Duke C L. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation[J]. Agriculture Ecosystems & Environment, 2000, 81(1): 57-69.
[16] Dong T, Liu J, Qian B, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observations & Geoinformation, 2016, 49: 63-74.
[17] Jin M, Liu X, Wu L, et al. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice[J]. International Journal of Applied Earth Observations & Geoinformation, 2015, 41: 118-129.
[18] Zhou G, Liu X, Zhao S, et al. Estimating FAPAR of rice growth period using radiation transfer model coupled with the WOFOST model for analyzing heavy metal stress[J]. Remote Sensing, 2017, 9(5): 424-438.
[19] Jégo G, Pattey E, Liu J. Using leaf area index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops[J]. Field Crops Research, 2012, 131(2): 63-74.
[20] Dente L, Satalino G, Mattia F, et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment, 2008, 112(4): 1395-1407.
[21] 王航,朱艷,馬孟莉,等. 基于更新和同化策略相結合的遙感信息與水稻生長模型耦合技術的研究[J]. 生態學報,2012,32(14):4505-4515. Wang Hang, Zhu Yan, Ma Mengli, et al. Coupling remotely sensed information with a rice growth model by combining updating and assimilation strategies[J]. Acta Ecologica Sinica, 2012, 32(14): 4505-4515. (in Chinese with English abstract)
[22] Launay M, Guerif M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications[J]. Agriculture Ecosystems & Environment, 2005, 111(1/2/3/4): 321-339.
[23] Guérif M, Duke C L. Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation[J]. European Journal of Agronomy, 1998, 9(2/3): 127-136.
[24] 陳勁松,黃健熙,林琿,等. 基于遙感信息和作物生長模型同化的水稻估產方法研究[J]. 中國科學:信息科學,2010(S1):173-183. Chen Jinsong, Huang Jianxi, Lin Hui, et al. Rice yield estimation by assimilation remote sensing into crop growth model[J]. Science China Information Sciences, 2010(S1):173-183. (in Chinese with English abstract)
[25] Ma G, Huang J, Wu W, et al. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield[J]. Mathematical & Computer Modelling, 2013, 58(3/4): 634-643.
[26] Shen S H, Yang S B, Li B B, et al. A scheme for regional rice yield estimation using ENVISAT ASAR data[J]. Science in China, 2009, 52(8): 1183-1194.
[27] Huang J, Tian L, Liang S, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and Forest Meteorology, 2015, 204: 106-121.
[28] 包姍寧,曹春香,黃健熙,等. 同化葉面積指數和蒸散發雙變量的冬小麥產量估測方法[J]. 地球信息科學學報,2015,17(7):871-882. Bao Shanning, Cao Chunxiang, Huang Jianxi, et al. Research on winter wheat yield estimation based on assimilation of leaf area index and evapotranspiration data[J]. Journal of Geo-Information Science, 2015, 17(7): 871-882.(in Chinese with English abstract)
[29] Zhou H, Wu J, Li X, et al. Improving soil moisture estimation by assimilating remotely sensed data into crop growth model for agricultural drought monitoring[C]// Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2016: 4229?4232.
[30] He B, Li X, Quan X, et al. Estimating the aboveground dry biomass of grass by assimilation of retrieved LAI into a crop growth model[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(2): 550-561.
[31] Fang H, Liang S, Hoogenboom G. Integration of MODIS LAI and vegetation index products with the CSM-CERES- Maize model for corn yield estimation[J]. International Journal of Remote Sensing, 2011, 32(4): 1039-1065.
[32] Jin H, Li A, Wang J, et al. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data[J]. European Journal of Agronomy, 2016, 78: 1-12.
[33] Dong Y, Wang J, Li C, et al. Comparison and analysis of data assimilation algorithms for predicting the leaf area index of crop canopies[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(1): 188-201.
[34] Huang J, Ma H, Su W, et al. Jointly Assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4060-4071.
[35] 朱元勵,朱艷,黃彥,等. 應用粒子群算法的遙感信息與水稻生長模型同化技術[J]. 遙感學報,2010,14(6):1226-1240. Zhu Yuanli, Zhu Yan, Huang Yan, et al. Assimilation technique of remote sensing information and rice growth model based on particle swarm optimization[J]. Journal of Remote Sensing, 2010, 14(6): 1226-1240. (in Chinese with English abstract)
[36] Fang H, Liang S, Hoogenboom G, et al. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model[J]. International Journal of Remote Sensing, 2008, 29(10): 3011-3032.
[37] Liu F, Liu X, Ding C, et al. The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model[J]. Field Crops Research, 2015, 183: 225-234.
[38] Jin X, Kumar L, Li Z, et al. Estimation of winter wheat biomass and yield by combining the AquaCrop model and field hyperspectral data[J]. Remote Sensing, 2016, 8(12): 1-15.
[39] Jin X, Li Z, Yang G, et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 24-37.
[40] Silvestro P, Pignatti S, Pascucci S, et al. Estimating wheat yield in China at the field and district scale from the assimilation of satellite data into the Aquacrop and simple algorithm for yield (SAFY) models[J]. Remote Sensing, 2017, 9(6): 509-532.
[41] Li Z, Wang J, Xu X, et al. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation[J]. Remote Sensing, 2015, 7(9): 12400-12418.
[42] Ines A V M, Honda K, Gupta A D, et al. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture[J]. Agricultural Water Management, 2006, 83(3): 221-232.
[43] Vazifedoust M, van Dam J C, Bastiaanssen W, et al. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts[J]. International Journal of Remote Sensing, 2009, 30(10): 2523-2545.
[44] Wu S, J. Huang, X. Liu, et al. Assimilating MODIS-LAI into crop growth model with EnKF to predict regional crop yield[C]//International Conference on Computer and Computing Technologies in Agriculture. Springer, Berlin, Heidelberg, 2011:410?418.
[45] 黃健熙,武思杰,劉興權,等. 基于遙感信息與作物模型集合卡爾曼濾波同化的區域冬小麥產量預測[J]. 農業工程學報,2012,28(4):142-148. Huang Jianxi, Wu Sijie, Liu Xingquan, et al. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 142-148. (in Chinese with English abstract)
[46] Zhao Y, Chen S, Shen S. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation[J]. Ecological Modelling, 2013, 270(2): 30-42.
[47] Zhu X, Zhao Y, Feng X. A methodology for estimating leaf area index by assimilating remote sensing data into crop model based on temporal and spatial knowledge[J]. Chinese Geographical Science, 2013, 23(5): 550-561.
[48] Liu J, Huang J, Tian L, et al. Regional winter wheat yield prediction by integrating MODIS LAI into the WOFOST model with sequential assimilation technique[J]. Journal of Food, Agriculture & Environment, 2014, 12(1): 180-187.
[49] 陳思寧,趙艷霞,申雙和,等. 基于PyWOFOST作物模型的東北玉米估產及精度評估[J]. 中國農業科學,2013,46(14):2880-2893. Chen Sining, Zhao Yanxia, Shen Shuanghe, et al. Study on maize yield estimation and accuracy assessment based on PyWOFOST crop model in northeast China[J]. Scientia Agricultura Sinica, 2013, 46(14): 2880-2893.(in Chinese with English abstract)
[50] Li Y, Zhou Q, Zhou J, et al. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions[J]. Ecological Modelling, 2014, 291: 15-27.
[51] Huang J, Sedano F, Huang Y, et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation[J]. Agricultural and Forest Meteorology, 2016, 216: 188-202.
[52] Ma H, Huang J, Zhu D, et al. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter[J]. Mathematical and Computer Modelling, 2013, 58(3/4): 759-770.
[53] Cheng Z, Meng J, Qiao Y, et al. Preliminary study of soil available nutrient simulation using a modified WOFOST model and time-series remote sensing observations[J]. Remote Sensing, 2018, 10(1): 64-84.
[54] Wang J, Li X, Lu L, et al. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model[J]. European Journal of Agronomy, 2013, 49(49): 126-140.
[55] Curnel Y, de Wit A J W, Duveiller G, et al. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1843-1855.
[56] 解毅,王鵬新,劉峻明,等. 基于四維變分和集合卡爾曼濾波同化方法的冬小麥單產估測[J]. 農業工程學報,2015,31(1):187-195. Xie Yi, Wang Pengxin, Liu Junming, et al. Winter wheat yield estimation based on assimilation method combined with 4DVAR and EnKF[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 187-195. (in Chinese with English abstract)
[57] de Wit A J W, van Diepen C A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts[J]. Agricultural And Forest Meteorology, 2007, 146(1/2): 38-56.
[58] Chakrabarti S, Bongiovanni T E, Judge J, et al. Assimilation of downscaled SMOS soil moisture for quantifying drought impacts on crop yield in agricultural regions in Brazil[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3867-3879.
[59] Pauwels V, Verhoest N E, De Lannoy G J, et al. Optimization of a coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter[J]. Water Resources Research, 2007, 43(4): 244-247.
[60] Ines A V M, Das N N, Hansen J W, et al. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction[J]. Remote Sensing of Environment, 2013, 138: 149-164.
[61] Nearing G S, Crow W T, Thorp K R, et al. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment[J]. Water Resources Research, 2012, 48(5): 213-223.
[62] Jiang Z, Chen Z, Chen J, et al. Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4422-4431.
[63] Liu J, Huang J, Tian L, et al. Particle filter-based assimilation algorithm for improving regional winter wheat yield estimation[J]. Sensor Letters, 2014, 12(3): 763-769.
[64] Machwitz M, Giustarini L, Bossung C, et al. Enhanced biomass prediction by assimilating satellite data into a crop growth model[J]. Environmental Modelling & Software, 2014, 62: 437-453.
[65] 張樹譽,孫輝濤,王鵬新,等. 基于同化葉面積指數和條件植被溫度指數的冬小麥單產估測[J]. 干旱地區農業研究,2017,35(6):266-271. Zhang Shuyu, Sun Huitao, Wang Pengxin, et al. Winter wheat yield estimation based on the assimilated leaf area index and vegetation temperature condition index[J]. Agricultural Research in the Arid Areas, 2017, 35(6): 266-271. (in Chinese with English abstract)
[66] Gustafsson N. Discussion on ‘4D‐Var or EnKF?’[J]. Tellus Series A-dynamic Meteorology & Oceanography, 2007, 59(5): 774-777.
[67] Huang X, Xiao Q, Barker D M, et al. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results[J]. Monthly Weather Review, 2009, 137(1): 299-314.
[68] Gauthier P, Tanguay M, Laroche S, et al. Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the meteorological service of canada[J]. Monthly Weather Review, 2007, 135(6): 2339-2354.
[69] Qin J, Liang S, Liu R, et al. A weak-constraint-based data assimilation scheme for estimating surface turbulent fluxes[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 649-653.
[70] Kalnay E, Hong L I, Miyoshi T, et al. 4-D-Var or ensemble Kalman filter?[J]. Tellus Series A-dynamic Meteorology & Oceanography, 2007, 59(5): 758-773.
[71] Casa R, Varella H, Buis S, et al. Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach[J]. European Journal of Agronomy, 2012, 37(1): 1-10.
[72] Myneni R B, Hoffman S, Knyazikhin Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment, 2002, 83(1/2): 214-231.
[73] Baret F, Weiss M, Lacaze R, et al. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production[J]. Remote Sensing of Environment, 2013, 137: 299-309.
[74] 劉洋,劉榮高,陳鏡明,等. 葉面積指數遙感反演研究進展與展望[J]. 地球信息科學學報,2013,15(5): 734-743. Liu Yang, Liu Ronggao, Chen Jingming, et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(5): 734-743.(in Chinese with English abstract)
[75] 楊飛,孫九林,張柏,等. 基于PROSAIL模型及TM與實測數據的MODIS LAI精度評價[J]. 農業工程學報,2010,26(4):192-197. Yang Fei, Sun Jiulin, Zhang Bai, et al. Assessment of MODIS LAI product accuracy based on the PROSAIL model, TM and field measurements[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 192-197. (in Chinese with English abstract)
[76] 付立哲,屈永華,王錦地. MODIS LAI產品真實性檢驗與偏差分析[J]. 遙感學報,2017,21(2):206-217.
Fu Lizhe, Qu Yonghua, Wang Jindi. Bias analysis and validation method of the MODIS LAI product[J]. Journal of Remote Sensing, 2017, 21(2): 206-217. (in Chinese with English abstract)
[77] Kim H W. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia[J]. Ksce Journal of Civil Engineering, 2012, 16(2): 229-238.
[78] Velpuri N M, Senay G B, Singh R K, et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment, 2013, 139: 35-49.
[79] Xue B, Wang L, Li X, et al. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method[J]. Journal of Hydrology, 2013, 492: 290-297.
[80] Mertens J, Madsen H, Feyen L, et al. Including prior information in the estimation of effective soil parameters in unsaturated zone modelling[J]. Journal of Hydrology, 2004, 294(4): 251-269.
[81] Seidel S J, Palosuo T, Thorburn P, et al. Towards improved calibration of crop models: Where are we now and where should we go?[J]. European Journal of Agronomy, 2018, 94: 25-35.
[82] Irmak A, Jones J W, Batchelor W D. Estimating spatially variable soil properties for application of crop models in precision agriculture[J]. Transactions of the ASAE, 2001, 44(5): 1343-1353.
[83] Gauch H G, Hwang J T G, Fick G W. Model evaluation by comparison of model-based predictions and measured values[J]. Agronomy Journal, 2003, 95(6): 1442-1446.
[84] Liu W T H. Application of CERES-Maize Model to yield prediction of a Brazilian maize hybrid[J]. Agricultural & Forest Meteorology, 1989, 45(3): 299-312.
[85] Thorp K R, Batchelor W D, Paz J O, et al. Using cross-validation to evaluate CERES-Maize yield simulationswithin a decision support system for precision agriculture[J]. Transactions of the ASABE, 2007, 50(4): 1467-1479.
[86] Romanowicz R J, Beven K J. Comments on generalised likelihood uncertainty estimation[J]. Reliability Engineering & System Safety, 2006, 91(10): 1315-1321.
[87] Toshichika I, Masayuki Y, Motoki N. Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach[J]. Agricultural & Forest Meteorology, 2009, 149(2): 333-348.
[88] Marin F, Jones J W, Boote K J. A stochastic method for crop models: Including uncertainty in a sugarcane model[J]. Agronomy Journal, 2017, 109(2) : 483-495.
[89] 何亮,侯英雨,趙剛,等. 基于全局敏感性分析和貝葉斯方法的WOFOST作物模型參數優化[J]. 農業工程學報,2016,32(2):169-179. He Liang, Hou Yingyu, Zhao Gang, et al. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 169-179. (in Chinese with English abstract)
[90] Baigorria G A, Jones J W, O Brien J J. Potential predictability
of crop yield using an ensemble climate forecast by a regional circulation model[J]. Agricultural and Forest Meteorology, 2008, 148(8/9): 1353-1361.
[91] Hoogenboom G. Contribution of agrometeorology to the simulation of crop production and its applications[J]. Agricultural & Forest Meteorology, 2000, 103(1/2): 137-157.
[92] Lorenz E N, Hilborn R C. The essence of chaos[J]. Physics Today, 1993, 63(48):862-863.
[93] 丑紀范. 大氣科學中非線性與復雜性研究的進展[J]. 中國科學院院刊,1997,12(5):325-329. Chou Jifan. Progress in nonlinearity and complexity research in atmospheric sciences[J]. Proceedings of the Chinese Academy of Sciences, 1997,12(5):325-329.(in Chinese with English abstract)
[94] 姜志偉. 區域冬小麥估產的遙感數據同化技術研究[D]. 北京:中國農業科學院,2012. Jiang Zhiwei. Study of the Remote Sensing Data Assimilation Technology for Regional Winter Wheat Yield Estimation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese with English abstract)
[95] 李小文. 地球表面時空多變要素的定量遙感項目綜述[J].地球科學進展,2006,21(8):771-780. Li Xiaowen. Review of the project of quantitative remote sensing of major factors for spatial-temporal heterogeneity on the land surface[J]. Advances in Earth Science, 2006, 21(8):771-780. (in Chinese with English abstract)
[96] 李小文,曹春香,張顥. 尺度問題研究進展[J]. 遙感學報,2009,13(s1):12-20. Li Xiaowen, Cao Chunxiang, Zhang Hao. Development of research in scale effects[J]. Journal of Remote Sensing, 2009, 13(s1): 12-20. (in Chinese with English abstract)
[97] 李小文,王祎婷. 定量遙感尺度效應芻議[J]. 地理學報,2013,68(9):1163-1169.Li Xiaowen, Wang Yiting. Prospects on future developments of quantitative remote sensing[J]. Acta Geographica Sinica, 2013, 68(9):1163-1169. (in Chinese with English abstract)
[98] 李小文,趙紅蕊,張顥,等. 全球變化與地表參數的定量遙感[J]. 地學前緣,2002,9(2):365-370. Li Xiaowen, Zhao Hongrui, Zhang Hao, et al. Global change study and quant itat ive remote sensing for land surface parameters[J]. Earth Science Frontiers, 2002, 9(2): 365-370. (in Chinese with English abstract)
[99] Raffy M, Gregoire C. Semi-empirical models and scaling: A least square method for remote sensing experiments[J]. International Journal of Remote Sensing, 1998, 19(13): 2527-2541.
[100] 李小文,王錦地,Strahler A H. 尺度效應及幾何光學模型用于尺度糾正[J]. 中國科學:技術科學,2000,30(s1):12-17. Li Xiaowen, Wang Jindi, Strahler A H. Scale effect and geometric optics model for scale correction[J]. Science in China: Series E, 2000, 30(s1): 12-17. (in Chinese with English abstract)
[101] Li X, Wang J, Strahler A H. Scale effect of Planck’s law over nonisothermal blackbody surface[J]. Science in China, 1999, 42(6): 652-656.
[102] Gao Q, Yu M, Yang X, et al. Scaling simulation models for spatially heterogeneous ecosystems with diffusive transportation[J]. Landscape Ecology, 2001, 16(4): 289-300.
[103] Martínez B, García-Haro F J, Coca C D. Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site[J]. Agricultural & Forest Meteorology, 2009, 149(1): 130-145.
[104] Miller J R, Chen J M, Rubinstein I G. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery[J]. Remote Sensing of Environment, 2004, 89(2): 200-216.
[105] Garrigues S, Allard D, Baret F, et al. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data[J]. Remote Sensing of Environment, 2006, 105(4): 286-298.
[106] 徐希孺,范聞捷,陶欣. 遙感反演連續植被葉面積指數的空間尺度效應[J]. 中國科學:地球科學,2009,39(1):79-87. Xu Xiru, Fan Wenjie, Tao Xin. Spatial scale effects of remote sensing inversion of continuous vegetation leaf area index[J]. Scientia Sinica Terrae, 2009, 39(1): 79-87. (in Chinese with English abstract)
[107] Raffy M. Change of scale in models of remote sensing: A general method for spatialization of models[J]. Remote Sensing of Environment, 1992, 40(2): 101-112.
[108] Chen J M. Spatial scaling of a remotely sensed surface parameter by contexture-three land-atmospheric modeling experiments[J]. Remote Sensing of Environment, 1999, 69(1): 30-42.
[109] Duveiller G, Baret F, Defourny P. Crop specific green area index retrieval from MODIS data at regional scale by controlling pixel-target adequacy[J]. Remote Sensing of Environment, 2011, 115(10): 2686-2701.
[110] Inoue Y, Kurosu T, Maeno H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002, 81(2/3): 194-204.
[111] Toan T L, Laur H, Mougin E, et al. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images[J]. European Journal of Nutrition, 2017, 56(3): 1339-1346.
[112] Shao Y, Fan X, Liu H, et al. Rice monitoring and production estimation using multitemporal RADARSAT[J]. Remote Sensing of Environment, 2001, 76(3): 310-325.
[113] Molijn R A, Iannini L, Mousivand A, et al. Analyzing C-band SAR polarimetric information for LAI and crop yield estimations[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9239: 4-15.
[114] 馬鴻元. 遙感與作物模型數據同化的冬小麥產量集合預報方法研究[D]. 北京:中國農業大學,2018. Ma Hongyuan. Research on Winter Wheat Yield Ensemble Forecasting Based on Data Assimilation of Remote Sensing and Crop Model[D]. Beijing: China Agricultural University, 2018.(in Chinese with English abstract)
[115] 陳上,竇子荷,蔣騰聰,等. 基于聚類法篩選歷史相似氣象數據的玉米產量DSSAT-CERES-Maize預測[J]. 農業工程學報,2017,33(19):147-155. Chen Shang, Dou Zihe, Jiang Tengcong, et al. Maize yield forecast with DSSAT-CERES-Maize model driven by historical meteorological data of analogue years by clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 147-155. (in Chinese with English abstract)
[116] Park Y Y, Buizza R, Leutbecher M. TIGGE: Preliminary results on comparing and combining ensembles[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(637):
2029-2050.
[117] Swinbank R, Kyouda M, Buchanan P, et al. The TIGGE project and its achievements[J]. Bulletin of the American Meteorological Society, 2016, 97(1): 49-67.
[118] Eitzinger J, Trnka M, H?sch J, et al. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions[J]. Ecological Modelling, 2004, 171(3): 223-246.
[119] Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.
[120] Brisson N, Gary C, Justes E, et al. An overview of the crop model STICS[J]. European Journal of Agronomy, 2011, 18(3): 309-332.
[121] Martre P, Wallach D, Asseng S, et al. Multimodel
ensembles of wheat growth: many models are better than one[J]. Global Change Biology, 2015, 21(2): 911-925.
[122] Ruane A C, Hudson N I, Asseng S, et al. Multi-wheat- model ensemble responses to interannual climate variability[J].Environmental Modelling & Software, 2016, 81: 86-101.
[123] Nickolls J, Dally W J. The GPU Computing Era[J].IEEE Micro, 2010, 30(2): 56-69.
[124] Lee K H, Lee Y J, Choi H, et al. Parallel data processing with MapReduce: A survey[J]. Acm Sigmod Record, 2012, 40(4): 11-20.
[125] Zaharia M, Chowdhury M, Franklin M J, et al. Spark: cluster computing with working sets[C]//Usenix Conference on Hot Topics in Cloud Computing. Berkeley: USENIX Association, 2010: 95-101.
[126] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.
Review on data assimilation of remote sensing and crop growth models
Huang Jianxi1,2, Huang Hai1, Ma Hongyuan1, Zhuo Wen1, Huang Ran1, Gao Xinran1, Liu Junming1,2, Su Wei1,2, Li Li1,2, Zhang Xiaodong1,2, Zhu Dehai1,2
(1.100083,2.100083,)
Data assimilation technology, which can combine the advantages of remote sensing and crop growth models, has great potential in large-scale application of agricultural monitoring and yield forecasting. This review included 5 parts. And the first part introduced the framework of data assimilation system of crop growth model and remote sensing. The data assimilation system contained 3 basic components: dynamic model, observation data and assimilation algorithm. Taking the WOFOST model as an example, a schematic representation of assimilating remotely sensed data into a crop model was shown. The second part summarized the progress of data assimilation of crop growth model and remote sensing. The parameter optimization methods based on cost function and the sequential filtering methods based on estimation theory were two major groups of modern data assimilation strategies. The main difference between the two groups was that each subsequent observation for sequential filtering assimilation would only influence the change nature of the model from the current state; in contrast, parameter optimization methods adjusting the estimation using all of the available observations throughout the assimilation window. In general, MODIS data was the most commonly used remotely sensed data for large regional assimilation research, and data of Landsat TM, ETM+ and OLI were the major remotely sensed data used at regional scale. General models, like WOFOST, CERES, etc. were most widely used in agricultural data assimilation researches. The main object of these researches was food crops such as wheat, corn and rice. LAI (leaf area index) was most commonly used as the assimilation variable linking remote sensing and crop models. In addition, a number of studies found that time series of reflectance, vegetation index or backscattering coefficient could be directly assimilated into a coupled crop growth–radiative-transfer model to avoid the process of regional LAI retrieval. In general, yield estimation and forecast was the most important application. The third part discussed some key aspects affecting the assimilation accuracy, including 5 parts: 1) The pixel size for assimilation, which depended mainly on the specific application. However, heterogeneous, smallholder farming environments presented significant challenges for remotely sensed data assimilation for crop yield forecasting, as field size within these highly fragmented landscapes was often smaller than the pixel size of remote sensing products that were freely available. 2) The uncertainty of remote sensed parameter inversion, which needed to be quantitatively evaluated to ensure the accuracy of data assimilation. 3) The uncertainty of crop growth models, which caused by model structure, model parameters and weather driven data. 4) Data assimilation strategies and linking parameters. Two main data assimilation strategies, parameter optimization and sequential filtering methods, both had pros and cons. Therefore, more effective assimilation algorithms still needed to be developed. 5) The scale effect. Due to the variability of land cover and the complexity of the crop planting pattern in agricultural landscapes, the scale mismatch between the remotely sensed observations and the state variables of crop growth models remained a difficult challenge. The fourth part summarized the research trend of data assimilation for crop growth model and remote sensing. It included 5 directions: 1) from single assimilated parameter to multiple ones. 2) from single remotely sensed data to multiple ones, especially the combination of optical remote sensing and SAR(synthetic aperture radar). 3) from monitoring to forecasting. Based on former researches, an application framework combining data assimilation and numerical prediction was proposed. 4) from single crop growth model to multi-crop model coupling. 5) from single machine system to the high-performance parallel computing system, especially considering the recent advances in Google Earth Engine.
crops; remote sensing; models; crop growth models; data assimilation; agricultural monitoring; yield forecasting
10.11975/j.issn.1002-6819.2018.21.018
TP79; S31
A
1002-6819(2018)-21-0144-13
2018-06-14
2018-08-19
國家自然科學基金資助(41671418,41471342)
黃健煕,副教授,博士,博士生導師,主要從事農業定量遙感等研究。Email:jxhuang@cau.edu.cn
黃健熙,黃 海,馬鴻元,卓 文,黃 然,高欣然,劉峻明,蘇 偉,李 俐,張曉東,朱德海.遙感與作物生長模型數據同化應用綜述[J]. 農業工程學報,2018,34(21):144-156. doi:10.11975/j.issn.1002-6819.2018.21.018 http://www.tcsae.org
Huang Jianxi, Huang Hai, Ma Hongyuan, Zhuo Wen, Huang Ran, Gao Xinran, Liu Junming, Su Wei, Li Li, Zhang Xiaodong, Zhu Dehai. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 144-156. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.018 http://www.tcsae.org