999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

適宜核桃殼劃口位置改善其破殼特性提高整仁率

2018-10-11 03:11:28張恩銘張宏文李紅斌丑維新
關(guān)鍵詞:有限元

鄭 霞,張恩銘,坎 雜,張宏文,李紅斌,丑維新

?

適宜核桃殼劃口位置改善其破殼特性提高整仁率

鄭 霞1,2,張恩銘1,2,坎 雜1,2,張宏文1,2,李紅斌3,丑維新1,2

(1. 石河子大學(xué)機(jī)械電氣工程學(xué)院,石河子 832000;2. 農(nóng)業(yè)部西北農(nóng)業(yè)裝備重點(diǎn)試驗(yàn)室,石河子 832000; 3. 新疆科神農(nóng)業(yè)裝備科技開(kāi)發(fā)股份有限公司,石河子 832000)

針對(duì)目前傳統(tǒng)單一的機(jī)械破殼方式存在的破殼率和整仁率難以平衡的問(wèn)題,該文以預(yù)處理視角研究了對(duì)新疆核桃進(jìn)行破殼前劃口預(yù)處理的靜態(tài)壓力試驗(yàn),試驗(yàn)結(jié)果表明,核桃劃口預(yù)處理相比未處理核桃的破殼力和破殼形變量明顯減小,整仁率明顯增加;當(dāng)核桃劃口位置和施加載荷位置均在核桃肚部時(shí),核桃破殼力和破殼形變量均明顯減小,與未處理的核桃相比破殼力減小了139 N,減幅為38.4%;破殼形變量減小了0.37 mm,減幅為18.2%;利用三維掃描儀對(duì)研究對(duì)象進(jìn)行三維建模,使其更接近物料實(shí)形,并實(shí)施模型核桃劃口處理。有限元靜力學(xué)分析結(jié)果表明:未劃口處理的核桃,其殼體表面最大應(yīng)變、應(yīng)力和形變發(fā)生在加載位置;當(dāng)加載力相同時(shí),劃口預(yù)處理?xiàng)l件下在核桃劃口位置產(chǎn)生的應(yīng)變、應(yīng)力和形變量最大;當(dāng)核桃劃口位置和加載位置均在核桃肚部時(shí),核桃殼表面產(chǎn)生的應(yīng)變、應(yīng)力和形變量均較大。該研究結(jié)果經(jīng)驗(yàn)證與靜態(tài)壓力試驗(yàn)結(jié)果基本吻合。研究結(jié)果為核桃劃口機(jī)和核桃破殼設(shè)備的研制提供理論支撐。

有限元法;開(kāi)裂;劃口;核桃;預(yù)處理

0 引 言

核桃屬于胡桃科,核桃屬,具有很高的營(yíng)養(yǎng)價(jià)值和保健功能[1],核桃是世界上重要的堅(jiān)果之一,是四大堅(jiān)果之首。核桃仁內(nèi)含油率很高,居所有木本油料首位,是十分重要的食用油料資源[2]。中國(guó)是核桃的六大主產(chǎn)國(guó)之一,核桃栽種數(shù)量和栽種面積均居世界首位[3]。2014年,中國(guó)的核桃總產(chǎn)量達(dá)271.37萬(wàn)t,2020年產(chǎn)量預(yù)計(jì)可達(dá)300萬(wàn)t[4]。新疆是中國(guó)重要的核桃主產(chǎn)地之一[5],新疆核桃果仁酥脆細(xì)膩,香味濃郁,含油率高,品質(zhì)好,深受消費(fèi)者喜愛(ài)。但隨著核桃產(chǎn)量的增加,以原果形式直接銷(xiāo)售勢(shì)必會(huì)因貯藏和運(yùn)輸成本高、商品率低、用途受限、附加值低而嚴(yán)重影響核桃產(chǎn)業(yè)的綜合效益,對(duì)核桃進(jìn)行綜合開(kāi)發(fā)和破殼取仁后精深加工已成為推動(dòng)核桃產(chǎn)業(yè)可持續(xù)發(fā)展的必然選擇。

解決核桃的破殼加工問(wèn)題首先要涉及對(duì)核桃的物理特性進(jìn)行研究和分析[6]。目前,中國(guó)學(xué)者對(duì)核桃物理特性如,核桃的品種、形狀、尺寸、內(nèi)部結(jié)構(gòu)和殼厚度等[7]做了相關(guān)分析研究工作,為核桃加工設(shè)備的研制提供了一定的理論依據(jù)。但是,由于其工具軟件對(duì)核桃物理特性分析建模結(jié)果與實(shí)際殼體存在一定的差距,加上因核桃物理特性參數(shù)選取問(wèn)題而存在較大誤差等問(wèn)題,造成一些理論研究結(jié)果不能很好反映出核桃的主要特征。因此,有必要對(duì)核桃的縱徑、橫徑、棱徑、球度、殼厚和縫合線密度等物理特性進(jìn)行更全面的分析研究,從而建立與核桃實(shí)際情況接近的三維模型,同時(shí)獲得分析軟件中所需的準(zhǔn)確的核桃物理特性參數(shù)值,從而為研究設(shè)計(jì)開(kāi)發(fā)新型核桃破殼加工設(shè)備提供更加可靠的理論參考。

目前,新疆農(nóng)業(yè)大學(xué)的史建新研究團(tuán)隊(duì)、新疆農(nóng)墾科學(xué)院的李忠新研究團(tuán)隊(duì)、塔里木大學(xué)的張宏研究團(tuán)隊(duì)、陜西科技大學(xué)的鄭甲紅研究團(tuán)隊(duì)等核桃加工設(shè)備研究團(tuán)隊(duì)均對(duì)未處理的核桃物理特性進(jìn)行了很多研究工作,但預(yù)處理對(duì)核桃物理特性影響的研究還比較少[3,7-9]。近年來(lái)一些學(xué)者研究發(fā)現(xiàn),對(duì)堅(jiān)果實(shí)施劃口預(yù)處理有利于核桃破殼,還便于帶殼堅(jiān)果食品加工時(shí)入味。中國(guó)農(nóng)業(yè)大學(xué)肖紅偉等人設(shè)計(jì)了一種板栗激光劃口機(jī),為提高板栗后續(xù)爆腰加工的效果提供了技術(shù)基礎(chǔ)[10]。陜西科技大學(xué)鄭甲紅等設(shè)計(jì)了一種鋸口擠壓式核桃破殼機(jī),先對(duì)核桃進(jìn)行鋸口,然后對(duì)核桃進(jìn)行擠壓破殼,該機(jī)更有利于核桃破殼,提高破殼質(zhì)量[11]。只介紹了鋸口擠壓式核桃破殼機(jī)但并沒(méi)有進(jìn)一步研究不同劃口方式和加載力方式對(duì)破殼特性的影響。

本文結(jié)合分析核桃破殼的相關(guān)物理特性。通過(guò)靜態(tài)壓力試驗(yàn)研究,利用有限元分析建模和仿真,獲得破殼前實(shí)施劃口處理的位置和實(shí)施加載力的位置和大小等關(guān)鍵參數(shù),為核桃劃口機(jī)的設(shè)計(jì)提供技術(shù)支撐。

1 試驗(yàn)裝置

DF-9000動(dòng)靜態(tài)萬(wàn)能材料試驗(yàn)機(jī)(高鐵科技股份有限公司),試驗(yàn)力測(cè)量范圍:20~1 000 N,位移分解度0.001 mm。該儀器主要用于材料的剪切、壓縮、拉伸、彎曲等測(cè)試,且本試驗(yàn)裝置的精度比較高,可以滿足試驗(yàn)的要求。0~150 mm游標(biāo)卡尺,其精度為0.02 mm,0~25 mm千分尺,其精度為0.001 mm,電熱鼓風(fēng)干燥箱(上海一恒)溫控范圍:10~250 ℃。銳龍4100切割機(jī)(永康市石柱銳龍工具廠),空載轉(zhuǎn)速13 000 r/min,鋸片厚度2 mm。

2 試驗(yàn)材料選擇研究分析

2.1 核桃品種

新疆核桃。目前新疆栽培面積最為廣泛的核桃品種主要有扎343、新豐、溫185、溫179、新新2號(hào)和新早豐等品種,通過(guò)對(duì)比分析,從中選取劃口預(yù)處理對(duì)核桃破殼特性影響的最佳研究對(duì)象。

扎343中我國(guó)的推廣品種之一,果型大,卵圓形,果基圓,果頂小而圓,殼面光滑,縫合線窄而平,結(jié)合較緊密,果仁飽滿。新豐核桃早實(shí)豐產(chǎn),堅(jiān)果短卵形,較光滑,縫合線凸起且結(jié)合十分緊密,核仁飽滿[12]。溫185與179相似,典型的堅(jiān)果圓形,殼面光滑美觀,果仁飽滿,偶爾有露仁果,縫合線較松[13]。新新2號(hào)堅(jiān)果中等大,堅(jiān)果圓形或長(zhǎng)圓形,果基圓,果頂漸尖,似桃形,殼面光滑美觀,縫合線窄而平,結(jié)合緊密,核仁飽滿。新早豐堅(jiān)果橢圓形,果基圓,果頂漸尖,殼面光滑,縫合線平,結(jié)合十分緊密,核仁飽滿[14]。

2.2 核桃的物理特性

劉明政等發(fā)現(xiàn),核桃外形尺寸越大,所需破殼力就越大[15]。核桃的殼厚越厚,縫合線越緊密度,機(jī)械強(qiáng)度越大[16]。核桃縫合線處殼的厚度最大,緊密度最大,破殼時(shí)碎仁率高[15]。

因?yàn)楹颂倚螤畈灰?guī)則,在此定義各軸均通過(guò)核桃中心,核桃沿長(zhǎng)軸方向的直徑為縱徑,核桃垂直縫合線短軸方向的直徑為橫徑,核桃沿縫合線短軸方向的直徑為棱徑。在核桃棱或核桃肚劃口位置如圖1所示。

圖1 核桃各徑向圖

6種核桃外形各有差異,既有橢球形的,也有球形的。用球度來(lái)表示核桃的外形特征,近似程度用球度公式表示為[17]

殼仁之間的距離在不同位置稍有差異,用核桃3個(gè)不同位置殼仁之間的距離平均值為核桃的殼仁間隙,殼仁間隙公式表示為

式中球度即核桃接近球體的程度;D近似球體直徑即核桃近似球體直徑的尺寸,cm;D最大直徑即核桃最大直徑的尺寸,cm;sn殼仁間隙即核桃殼于核桃仁之間間隙的尺寸,mm;縱徑即核桃沿長(zhǎng)軸方向上的最大尺寸,cm;橫徑即核桃垂直縫合線短軸方向上的最大尺寸,cm;棱徑即核桃沿縫合線短軸方向上的最大尺寸,cm;仁縱徑即核桃仁沿長(zhǎng)軸方向上的最大尺寸,cm;仁橫徑即核桃仁垂直縫合線短軸方向上的最大尺寸,cm;仁棱徑即核桃仁沿縫合線短軸方向上的最大尺寸,cm;殼厚即核桃外殼的厚度尺寸,mm;隨機(jī)選取6種核桃各100個(gè),用游標(biāo)卡尺測(cè)量核桃的殼厚、縱徑、橫徑、棱徑、仁縱徑、仁橫徑和仁棱徑,利用球度公式,求出球度。對(duì)各數(shù)值進(jìn)行統(tǒng)計(jì)整理,如核桃的殼厚、縱徑、橫徑、棱徑、球度、殼仁間隙的平均值及標(biāo)準(zhǔn)差,如表1所示。

表1 6種核桃的物理特性和幾何尺寸

利用殼仁間隙公式,測(cè)得這6種核桃的桃殼仁間隙范圍在1.3~2.1 mm之間,殼仁間隙的平均值為1.68 mm。這和核桃破殼時(shí)所產(chǎn)生的形變量及其破殼效果有關(guān),當(dāng)核桃的破殼形變量小于殼仁間隙時(shí)才能保證核桃的整仁率。

由表1可知,核桃的球度在0.82~0.91之間。又因?yàn)闅と手g有間隙,在破殼時(shí)可以忽略核桃仁,其核桃殼可簡(jiǎn)化為薄球殼[15,18],可將其三維模型建成薄球殼。因此,將核桃破殼的過(guò)程簡(jiǎn)化為薄球殼體的破殼過(guò)程。

3 核桃靜態(tài)壓力試驗(yàn)

用DF-9000動(dòng)靜態(tài)萬(wàn)能材料試驗(yàn)機(jī)對(duì)未處理和預(yù)處理的核桃分別沿橫徑方向和棱徑方向進(jìn)行靜態(tài)壓力試驗(yàn),測(cè)試的試驗(yàn)數(shù)據(jù)會(huì)被電腦記錄下來(lái),可以得到核桃在破殼過(guò)程中的相關(guān)數(shù)據(jù)和曲線圖。

3.1 試驗(yàn)材料處理

核桃在破殼取仁過(guò)程中,含水率對(duì)核桃破殼效率和破殼質(zhì)量影響較大[9,19-21]。采用烘干法測(cè)這批核桃的含水率,對(duì)每組核桃試樣取到后立即稱(chēng)量,每組核桃試樣取2~3個(gè)核桃試樣稱(chēng)量并記錄數(shù)據(jù),數(shù)據(jù)精確到0.001 g。然后將同組的核桃試樣一并放入干燥箱內(nèi),溫度設(shè)定105 ℃,干燥8 h后,將核桃試樣進(jìn)行稱(chēng)量,接下來(lái)每隔2 h對(duì)選定核桃試樣稱(chēng)量1次。直到最后2次選定的桃試樣稱(chēng)量只差不超過(guò)0.002 g,認(rèn)為核桃試樣達(dá)到全干。將全干核桃放入到裝有干燥劑的干燥容器內(nèi),待冷卻到室溫再稱(chēng)重,計(jì)算核桃試樣的含水率。最終測(cè)得這批新豐核桃含水率平均數(shù)標(biāo)準(zhǔn)差為(11.7±1)%。利用銳龍切割機(jī)對(duì)分組后的新豐核桃進(jìn)行劃棱預(yù)處理和劃肚預(yù)處理。

3.2 物理參數(shù)的計(jì)算方法

為了更細(xì)致表達(dá)核桃破殼后的效果和核桃仁的完整程度,定義核桃的整仁率和破殼率。不需繼續(xù)破殼可取出仁的核桃為破殼核桃。核桃仁出口時(shí),根據(jù)核桃的完整程度進(jìn)行分類(lèi),半仁和大半仁被稱(chēng)之為一露仁,1/4仁和比1/4大的三角仁被稱(chēng)之為二露仁,比1/4仁小的仁被稱(chēng)之為碎仁[22]。試驗(yàn)參數(shù)有:破殼率1、一露仁率1、二露仁率2、整仁率3[23]。

式中0為核桃總個(gè)數(shù);1為破殼核桃個(gè)數(shù);0為核桃仁總質(zhì)量;1為一露仁質(zhì)量;2為二露仁質(zhì)量

3.3 試驗(yàn)方法

選取縱徑接近4.36 mm,橫徑接近3.32 mm,棱徑接近3.42 mm的新豐核桃300個(gè)。將選取的新豐核桃分成3組,第1組是不做劃口處理,第2組核桃是做劃肚處理,第3組是做劃棱處理。劃口后的核桃如圖2所示,圖2a為劃肚的核桃,圖2b為劃棱的核桃。用安裝有2 mm厚鋸片的銳龍切割機(jī)對(duì)新豐核桃進(jìn)行劃口,考慮到核桃給料時(shí)是縱徑方向水平放置狀態(tài),對(duì)肚部和棱部實(shí)施劃口處理是可以同時(shí)提高破殼率和整仁率的代表性的2個(gè)樣本位置,從棱部側(cè)面或肚部側(cè)面的最高點(diǎn)進(jìn)行切割劃口,完全將核桃殼劃透為止,一般劃口寬度為0.28~0.37 cm之間,一般劃口長(zhǎng)度為1.75~1.93 cm。

圖2 劃口的核桃

再將各組核桃分成2小組,每組50個(gè)核桃,一組核桃實(shí)施沿橫徑方向加載壓力,另一組的核桃實(shí)施沿棱徑方向加載壓力,如圖3所示。將分類(lèi)后的核桃放在DF-9000動(dòng)靜態(tài)萬(wàn)能材料試驗(yàn)機(jī)進(jìn)行壓力試驗(yàn),加載速率設(shè)為15 mm/min,可以得到核桃破殼時(shí)的最大破殼力,核桃破殼達(dá)到最大破殼力時(shí)核桃殼所發(fā)生的形變量,并統(tǒng)計(jì)核桃的破殼率和整仁率。

圖3 核桃施力圖

3.4 試驗(yàn)結(jié)果

將試驗(yàn)數(shù)據(jù)輸入到SPSS17.0軟件中,各種劃口于加載力方式組間的破殼力和破殼形變量的之間的差異采用單因素方差分析(ANOVA)。利用LSD法對(duì)各種劃口與加載力方式組間的破殼力和形變量的差異進(jìn)行兩兩比較,結(jié)果采用平均值標(biāo)準(zhǔn)差表示,均值差的顯著性水平為0.05。分析結(jié)果顯示破殼力各組數(shù)據(jù)2組之間的值均小于0.01,各組之間差異非常顯著性。分析結(jié)果顯示破殼形變量各組數(shù)據(jù)2組之間的值均小于0.01,各組之間差異非常顯著性。將新豐核桃壓力試驗(yàn)結(jié)果破殼率、整仁率、破殼力和形變量的平均值標(biāo)準(zhǔn)差數(shù)值填入到表2中。

由表2中數(shù)據(jù)可以計(jì)算出,未處理的新豐核桃沿橫徑實(shí)施加載力時(shí)比沿棱徑加載力時(shí)所需的平均破殼力大93 N,未處理的新豐核桃沿橫徑加載力時(shí)破殼所需的平均形變量比沿棱徑加載力時(shí)破殼所需的平均形變量大0.46 mm。未處理的新豐核桃沿橫徑實(shí)施加載力時(shí)整仁率為86%,未處理的新豐核桃沿棱徑實(shí)施加載力時(shí)整仁率為78%,未處理的新豐核桃沿橫徑實(shí)施加載力時(shí)比沿棱徑加載力時(shí)整仁率高8個(gè)百分點(diǎn)。

表2 新豐核桃壓力試驗(yàn)結(jié)果

注:1-A為未預(yù)處理沿橫向加載力,1-B為未預(yù)處理沿棱向加載力,2-A為劃肚預(yù)處理沿橫向加載力,2-B為劃肚預(yù)處理沿棱向加載力,3-A為劃棱預(yù)處理沿橫向加載力,3-B為劃棱預(yù)處理沿棱向加載力.

Note: 1-A means a loading force untreated along the transverse direction; 1-B means a loading force untreated along the edge direction; 2-A means a loading force with pretreatment by cutting belly of walnut shell along the transverse direction; 2-B means a loading force with pretreatment by cutting belly of walnut shell along the edge direction; 3-A means a loading force with pretreatment by cutting edge of walnut shell along the transverse direction; 3-B means a loading force with pretreatment by cutting edge of walnut shell along edge direction.

由表2中數(shù)據(jù)可以計(jì)算出,經(jīng)過(guò)劃肚預(yù)處理的新豐核桃與未處理的新豐核桃相比破殼力和破殼形變量均明顯減小,當(dāng)加載位置與劃口位置重合都在肚部時(shí),平均破殼力減小139 N,減幅為38.4%。平均破殼形變量減小0.37 mm,減幅為18.2%。當(dāng)加載力方向與劃口方向垂直時(shí),平均破殼力減小18 N,減幅為6.6%。平均破殼形變量減小0.11 mm,減幅為7%。當(dāng)加載位置與劃口位置重合時(shí),經(jīng)過(guò)劃肚預(yù)處理的新豐核桃比未處理的新豐核桃整仁率高12個(gè)百分點(diǎn)。當(dāng)加載力方向與劃口方向垂直時(shí),經(jīng)過(guò)劃肚預(yù)處理的新豐核桃比未處理的新豐核桃整仁率高8個(gè)百分點(diǎn)。

由表2中數(shù)據(jù)可以計(jì)算出,經(jīng)過(guò)劃棱預(yù)處理的新豐核桃破殼力明顯都比未經(jīng)過(guò)預(yù)處理的新豐核桃破殼力小。當(dāng)加載位置與劃口位置重合都在棱部時(shí),與未處理的新豐核桃相比,平均破殼力減小了32 N,減幅為11.9%。平均破殼形變量減小了0.21 mm,減幅為13.4%。當(dāng)加載力方向與劃口方向垂直時(shí),與未處理的新豐核桃相比,平均破殼力減小了82 N,減幅為22.7%。平均破殼形變量減小了0.16 mm,減幅為7.9%。當(dāng)加載力方向與劃口方向垂直時(shí),經(jīng)過(guò)劃棱預(yù)處理的新豐核桃比未處理的新豐核桃整仁率高2個(gè)百分點(diǎn)。當(dāng)加載位置與劃口位置重合時(shí),經(jīng)過(guò)劃棱預(yù)處理的新豐核桃比未處理的新豐核桃整仁率高6個(gè)百分點(diǎn)。

綜上可知,劃肚預(yù)處理的核桃當(dāng)加載位置與劃口位置重合時(shí),破殼力和形變量減小幅度最大,且破殼率和整仁率最高。

4 有限元靜力學(xué)分析

4.1 三維建模掃描裝置

Creaform Handyscan700手持式三維掃描儀,精度可達(dá)0.03 mm,分辨率可達(dá)0.05 mm。Creaform Handyscan700手持式三維掃描儀能夠完成高分辨率的3D掃描,具有快速、準(zhǔn)確完成掃描等優(yōu)點(diǎn)。

4.2 建立三維模型

國(guó)外的Guner[24]和Mohsenin[25]等學(xué)者以及國(guó)內(nèi)的史建新[26]和曹成茂[27]等學(xué)者均在三維繪圖軟件中繪制三維模型,再對(duì)未預(yù)處理的核桃進(jìn)行有限元力學(xué)分析,研究核桃破殼過(guò)程中的力學(xué)特性。由于殼仁之間有間隙,在破殼時(shí)可以忽略核桃仁,其核桃殼可簡(jiǎn)化為薄球殼[17-18]。本文借助三維掃描儀進(jìn)行三維建模,使核桃模型更接近核桃實(shí)際形狀,再分別對(duì)未預(yù)處理的核桃、劃肚預(yù)處理的核桃和劃棱預(yù)處理的核桃進(jìn)行有限元靜力學(xué)分析,研究核桃劃口處理對(duì)破殼特性的影響。

從這批新豐核桃中選出一個(gè)最接近平均尺寸的核桃。用三維掃描儀分別對(duì)該核桃和該核桃破殼后取出的完整分心木進(jìn)行掃描,將核桃和分心木先后放在鋪滿反光型角形標(biāo)志點(diǎn)的平面上,首先將三維掃描儀上的相機(jī)進(jìn)行準(zhǔn)確標(biāo)定。三維掃描儀上的2個(gè)相機(jī)可以分別獲得投影到核桃和分心木上的激光,該激光隨核桃和分心木表面形狀發(fā)生變化,三維掃描儀可以通過(guò)計(jì)算獲得激光線所投影的線狀三維信息。隨著三維掃描儀移動(dòng),不斷獲得激光所經(jīng)過(guò)位置的三維信息,從而形成連續(xù)的三維數(shù)據(jù),完成掃描。再在VXelements軟件中對(duì)掃描面數(shù)據(jù)進(jìn)行預(yù)處理(即對(duì)核桃和分心木網(wǎng)格進(jìn)行補(bǔ)洞、精簡(jiǎn)處理),導(dǎo)出核桃和分心木網(wǎng)格,保存為“STL”格式,在Geomagic Studio軟件中對(duì)核桃和分心木網(wǎng)格進(jìn)行精處理(平滑、平面優(yōu)化等)操作,將處理后的核桃網(wǎng)格在SolidWorks Scan to 3D模塊中生成曲面體,并對(duì)生成曲面體進(jìn)行賦厚,新豐核桃殼厚設(shè)為1.48 mm,生成核桃殼體,將處理后的分心木網(wǎng)格在SolidWorks Scan to 3D模塊中生成實(shí)體,將核桃殼體模型和分心木三維模型裝配在一起,完成三維建模。

在SolidWorks軟件中把建好的三維模型分別進(jìn)行劃肚預(yù)處理和劃棱預(yù)處理,再將模型導(dǎo)入到ANSYS Workbench 模塊進(jìn)行靜力學(xué)分析。

4.3 新豐核桃三維模型靜力學(xué)分析結(jié)果與討論

因?yàn)楹颂覛な谴嘈圆牧希瑒t核桃殼采用脆性斷裂破壞強(qiáng)度準(zhǔn)則。通過(guò)試驗(yàn)測(cè)定和查閱相關(guān)文獻(xiàn)設(shè)定核桃殼和分心木的密度為470 kg/m3,泊松比為0.3,彈性模量為10 MPa[26-28]。

劃分網(wǎng)格對(duì)有限元分析的準(zhǔn)確性和計(jì)算量有很大的影響[29]。對(duì)有限元模型進(jìn)行自由網(wǎng)格劃分,生成單元為SOLID65四面體單元,節(jié)點(diǎn)總數(shù)27 146,單元總數(shù)13 598,網(wǎng)格劃分后的模型如圖4所示。

圖4 核桃網(wǎng)格圖

大多數(shù)的約束和載荷可以施加在幾何模型上,求解時(shí)ANSYS會(huì)自動(dòng)將這些約束和載荷轉(zhuǎn)換到節(jié)點(diǎn)和單元上。在核桃縱徑方向兩對(duì)稱(chēng)面指定約束,限制核桃殼發(fā)生位移,先后在核桃橫徑方向和棱徑方向施加一對(duì)擠壓力。由表2可算出不同劃口方式和不同加載方式所需的平均擠壓力為273 N,擠壓力統(tǒng)一設(shè)為試驗(yàn)結(jié)果的平均力273 N,施加約束和加載力如圖5所示。

圖5 核桃施加載荷和約束圖

首先將未處理、劃肚預(yù)處理和劃棱預(yù)處理的新豐核桃三維模型分別導(dǎo)入到ANSYS Workbench 模塊,依次進(jìn)行靜力學(xué)分析,得到新豐核桃未處理、劃肚預(yù)處理和劃棱預(yù)處理的不同加載方向的應(yīng)變?cè)品治鰣D、應(yīng)力云分析圖和總變形云分析圖。如圖6所示。

圖6中最大應(yīng)變、最大應(yīng)力和最大形變量統(tǒng)計(jì)結(jié)果如表3所示。

由圖6a和圖6b可以看出,對(duì)未處理新豐模型加載力時(shí),在加載位置出現(xiàn)最大應(yīng)力和應(yīng)變,應(yīng)力和應(yīng)變以加載位置為中心向四周逐漸擴(kuò)散并且減小,加載位置形變量最大,核桃會(huì)從加載位置破殼。由表3可以看出對(duì)未處理的新豐核桃模型沿橫徑加載力產(chǎn)生的最大形變量為1.53 mm,沿棱徑產(chǎn)生的最大形變量為1.64 mm,沿橫徑加載力產(chǎn)生的最大形變量比沿棱徑產(chǎn)生的最大形變量小,說(shuō)明未處理的新豐核桃的棱部比肚部更易開(kāi)裂。

由圖6c可以看出,對(duì)劃肚的新豐模型沿橫徑加載力時(shí),加載位置與劃口位置重合,在加載位置出現(xiàn)最大應(yīng)力和應(yīng)變,應(yīng)力和應(yīng)變以加載位置為中心向四周逐漸擴(kuò)散并且減小,加載位置形變量最大,核桃會(huì)從加載位置與劃口重合位置破殼。由圖6d可以看出,對(duì)劃肚的新豐模型沿棱徑加載力時(shí),加載力方向與劃口方向垂直,在加載位置和劃口同時(shí)出現(xiàn)最大應(yīng)力和應(yīng)變,應(yīng)力和應(yīng)變以加載位置和劃口為中心向四周逐漸擴(kuò)散并且減小,加載位置和劃口位置形變量最大,即核桃會(huì)從加載位置或者劃口位置破殼。

由圖6e可以看出,對(duì)劃棱的新豐模型沿橫徑加載力時(shí),加載力方向與劃口方向垂直,在加載位置和劃口同時(shí)出現(xiàn)最大應(yīng)力和應(yīng)變,應(yīng)力和應(yīng)變以加載位置和劃口位置為中心向四周逐漸擴(kuò)散并且減小,加載位置和劃口所在的位置形變量最大,核桃會(huì)從加載位置或者劃口位置破殼。由圖6f可以看出,對(duì)劃棱的新豐模型沿棱徑加載力時(shí),加載位置與劃口重合,在加載位置出現(xiàn)最大應(yīng)力和應(yīng)變,應(yīng)力和應(yīng)變以加載位置為中心向四周逐漸擴(kuò)散并且減小,加載位置形變量最大,核桃會(huì)從加載位置與劃口位置重合處破殼。

4.4 有限元靜力學(xué)分析討論

由表3可以看出,對(duì)未處理的核桃加載相同的力,沿棱徑加載力比沿橫徑加載力產(chǎn)生更大的形變量。史建新等對(duì)未處理的核桃進(jìn)行有限元分析,發(fā)現(xiàn)在核桃棱部加載力更容易產(chǎn)生裂紋[26]。Koyuncu等研究人員對(duì)核桃做了擠壓試驗(yàn),試驗(yàn)結(jié)果顯示擠壓核桃棱所需的破殼力比擠壓核桃肚所需的破殼力小[29]。本文對(duì)新豐核桃模型進(jìn)行有限元靜力學(xué)分析的結(jié)果也說(shuō)明未處理的新豐核桃的棱部比肚部更易開(kāi)裂,與靜態(tài)壓力試驗(yàn)未預(yù)處理核桃的試驗(yàn)結(jié)果相符。

由表3可以看出,對(duì)未處理和劃口預(yù)處理的核桃在相同位置加載相同的力,劃口預(yù)處理的核桃比未處理的核桃產(chǎn)生更大的應(yīng)變,應(yīng)力和形變量。美國(guó)海軍對(duì)耐壓球殼進(jìn)行了試驗(yàn),試驗(yàn)結(jié)果表明:球殼的破壞強(qiáng)度與局部初始缺陷的幾何形狀有關(guān)[30],對(duì)核桃殼劃口改變核桃殼的破壞強(qiáng)度。說(shuō)明經(jīng)過(guò)劃口預(yù)處理的核桃更易破殼,與靜態(tài)壓力試驗(yàn)劃口后的核桃加載相同位置所需的破殼力和破殼形變量更小相符。

由表3可以看出,對(duì)劃肚預(yù)處理和劃棱預(yù)處理的核桃加載相同的力,劃口與加載位置重合比劃口方向與加載力方向垂直時(shí)產(chǎn)生更大的應(yīng)變、應(yīng)力和形變量;劃口和加載位置都在肚部比劃口和加載位置都在棱部產(chǎn)生的更大的應(yīng)變、應(yīng)力和形變量。有人研究球殼的穩(wěn)定性發(fā)現(xiàn),完整的球殼加強(qiáng)筋不能增加球殼的穩(wěn)定性,有初始缺陷的球殼加強(qiáng)筋可以增加球殼的穩(wěn)定性[30]。核桃縫合線凸起就像在有初始缺陷的球殼上加強(qiáng)筋,綜上可知,劃口和加載位置都在肚部更有利于提高破殼率。與靜態(tài)壓力試驗(yàn)結(jié)果相符,靜態(tài)壓力試驗(yàn)結(jié)果顯示核桃當(dāng)加載位置與劃口位置在肚部重合時(shí),破殼力和形變量減小幅度最大。

圖6 不同預(yù)處理方式和加載方向下新豐核桃應(yīng)變、應(yīng)力、總變形云分析圖

表3 新豐核桃有限元分析結(jié)果

由圖6可以看出,核桃模型的殼體表面最大應(yīng)變、應(yīng)力和形變量一般在加載位置或劃口處。劉家寶等對(duì)球殼模型進(jìn)行了有限元分析,將有限元分析與經(jīng)驗(yàn)方法相結(jié)合得到結(jié)論是:對(duì)于有初始缺陷的球殼,其破壞往往是從缺陷處開(kāi)始發(fā)生的[31]。核桃簡(jiǎn)化為薄球殼,那么劃口就可以看作薄球殼的初始缺陷。當(dāng)劃口和加載位置都在肚部時(shí),核桃會(huì)從肚部破殼。如圖7所示,對(duì)破殼后的核桃進(jìn)行觀察不難發(fā)現(xiàn)核桃仁中間有個(gè)大縫隙,大縫隙中間是核桃的分心木,核桃的2個(gè)半仁只靠核桃仁大縫隙之間的一個(gè)結(jié)合點(diǎn)連接。核桃殼從肚部裂開(kāi)可以使核桃仁沿大縫隙裂開(kāi),從而保證核桃的整仁率。這也為劃肚預(yù)處理且橫徑加載力整仁率最高提供了理論依據(jù)。

圖7 破殼的核桃

5 結(jié) 論

靜態(tài)壓力試驗(yàn)和有限元靜力學(xué)分析結(jié)果表明:未處理的新豐核桃沿棱徑加載力比沿橫徑加載力更易破裂。

靜態(tài)壓力試驗(yàn)和有限元靜力學(xué)分析結(jié)果表明:劃口預(yù)處理有效減小核桃破殼力和破殼形變量,經(jīng)過(guò)劃口預(yù)處理的核桃更易破殼。

靜態(tài)壓力試驗(yàn)表明:當(dāng)核桃劃口和加載位置均在核桃肚部時(shí)最有利于核桃破殼,核桃破殼力和破殼形變量減小最為明顯,整仁率顯著提高,與加載位置在肚部未處理的核桃相比破殼力減小139 N,破殼形變量減小0.37 mm,整仁率提高了12個(gè)百分點(diǎn)。

本研究對(duì)劃口預(yù)處理的核桃進(jìn)行了靜態(tài)壓力試驗(yàn)和有限元靜力學(xué)分析,研究結(jié)果為核桃劃口機(jī)和核桃破殼設(shè)備的研制提供了理論支撐。

[1] 朱占江,李忠新,楊莉玲,等. 核桃殼仁分離技術(shù)研究進(jìn)展[J]. 食品工業(yè),2014,35(2):216-219. Zhu Zhanjiang, Li Zhongxin, Yang Liling, et al. Research progress on the separation technology of walnut shell- kernel[J]. The Food Industry, 2014, 35(2): 216-219. (in Chinese with English abstract)

[2] 張有林,原雙進(jìn),王小紀(jì),等. 基于中國(guó)核桃發(fā)展戰(zhàn)略的核桃加工業(yè)的分析與思考[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):1-8. Zhang Youlin, Yuan Shuangjin, Wang Xiaoji, et al. Analysis and reflection on development strategy of walnut processing industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31 (21): 1-8. (in Chinese with English abstract)

[3] 李忠新,劉奎,楊莉玲,等. 錐籃式核桃破殼裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(增刊1):146-152. Li Zhongxin, Liu Kui, Yang Liling, et al. Design and experiment of walnut-cracking device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43 (Supp.1): 146-152. (in Chinese with English abstract)

[4] 鄧金龍. 我國(guó)核桃生產(chǎn)現(xiàn)狀及發(fā)展策略[J]. 林產(chǎn)工業(yè),2016,43(10):56-58. Deng Jinlong. Current situation and development strategy of walnut industry in China[J]. China Forest Products Industry, 2016, 43(10): 56-58. (in Chinese with English abstract)

[5] 崔寬波,李忠新,楊莉玲,等. 核桃加工產(chǎn)業(yè)現(xiàn)狀分析[J].糧油加工(電子版),2014(8):56-60. Cui Kuanbo, Li Zhongxin, Yang Lilin, et al. Situation analysis of walnut processing industry[J]. Machinery for Cereals Oil and Food Processing (Electronic), 2014(8): 56-60.(in Chinese with English abstract)

[6] 周軍,史建新. 氣爆式核桃破殼有限元力學(xué)分析[J]. 農(nóng)機(jī)化研究,2014,36(12):65–69. Zhou Jun, Shi Jianxin. Finite element mechanics analysis for breaking walnut shell in gas explosion type[J]. Journal of Agricultural Mechanization Research, 2014, 36(12): 65–69. (in Chinese with English abstract)

[7] 董詩(shī)韓. 多輥擠壓式核桃破殼機(jī)的設(shè)計(jì)及試驗(yàn)研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2011. Dong Shihan. Design and Experimental Study of MultiRoll Extruded Walnut Sheller[D]. Urumqi: Xinjiang Agricultural University, 2011. (in Chinese with English abstract)

[8] 高警. 核桃破殼機(jī)理研究及破殼機(jī)的設(shè)計(jì)[D]. 西安:陜西科技大學(xué),2015. Gao Jing. Study on Mechanism of Walnut Shell Cracking and Design of Walnut Shell Cracking Machine[D]. Xi'an: Shanxi University of Science and Technology, 2015. (in Chinese with English abstract)

[9] 張宏,馬巖,蘭海鵬,等. 溫185核桃破殼取仁工藝試驗(yàn)研究[J]. 安徽農(nóng)業(yè)科學(xué),2014,42(21):7187-7190. Zhang Hong, Ma Yan, Lan Haipeng, et al. Study on test of cracking walnut and fetching kernel to Xinjiang Wen 185[J]. Journal of Anhui Agricultural Sciences, 2014, 42(21): 7187-7190. (in Chinese with English abstract)

[10] 肖紅偉,林海,高振江,等. 板栗激光劃口機(jī)設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(11):138-141. Xiao Hongwei, Lin Hai, Gao Zhenjiang, et al. Design of chestnut shell-cutting machine using laser[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 138-141. (in Chinese with English abstract)

[11] 鄭甲紅,趙奎鵬,王婭妮. 鋸口擠壓式核桃破殼機(jī)[J]. 木材加工機(jī)械,2015,26(2):5-7. Zheng Jiahong, Zhao Kuipeng, Wang Yani. Design on walnut shell-breaking machine with sawing and extrusion[J]. Wood Processing Machine, 2015, 26(2): 5-7. (in Chinese with English abstract)

[12] 劉奎,李忠新,楊莉玲,等. 機(jī)械破殼時(shí)核桃仁損傷特征研究[J]. 農(nóng)產(chǎn)品加工(學(xué)刊),2014(16):41-44. Liu Kui, Li Zhongxin, Yang Liling, et al. The walnut kernel damage characteristics during the walnut mechanical shelling process[J]. Academic Periodical of Farm Products Processing, 2014(16): 41-44. (in Chinese with English abstract)

[13] 張樹(shù)信.新疆核桃良種資源[J]. 新疆農(nóng)業(yè)科學(xué),1989,31(3):30-31. Zhang Shuxin. Xinjiang walnut seed resources[J]. Xinjiang Agricultural Science, 1989, 31(3): 30-31. (in Chinese with English abstract)

[14] 喬園園,史建新,董遠(yuǎn)德. 影響核桃殼仁脫離的主要因素[J].農(nóng)機(jī)化研究,2008,30(4):43-45. Qiao Yuanyuan, Shi Jianxin, Dong Yuande. The main factors for affecting the shell-kernel separation effect of walnut [J]. Journal of Agricultural Mechanization Research, 2008, 30(4): 43-45. (in Chinese with English abstract)

[15] 劉明政,李長(zhǎng)河,張彥彬,等. 柔性帶剪切擠壓核桃破殼機(jī)理分析與性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7): 266-273. Liu Mingzheng, Li Changhe, Zhang Yanbin, et al. Shell crushing mechanism analysis and performance test of flexible-belt shearing extrusion for walnut [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (7): 266-273. (in Chinese with English abstract)

[16] 趙悅平,趙書(shū)崗,王紅霞,等. 核桃堅(jiān)果結(jié)構(gòu)與核仁商品品質(zhì)的關(guān)系[J]. 林業(yè)科學(xué),2007,43(12):81-85.

[17] 吳子岳.核桃剝殼的力學(xué)分析[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),1995,41(3):116-123. Wu Ziyue. Mechanical analysis of walnut shell[J]. Journal of Nanjing Agricultural University, 1995, 41(3): 116-123. (in Chinese with English abstract)

[18] 吳子岳. 綿核桃剝殼取仁機(jī)械的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1995,11(4):164-169. Wu Ziyue. Research on principle and mechanics of cracking and extracting kernel of soft-walnut[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1995, 11(4): 164-169. (in Chinese with English abstract)

[19] 張宏,馬巖,李勇,等. 基于遺傳BP神經(jīng)網(wǎng)絡(luò)的核桃破裂功預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):78-84. Zhang Hong, Ma Yan, Li Yong, et al. Rupture energy prediction model for walnut shell breaking based on genetic BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 78-84. (in Chinese with English abstract)

[20] 丁冉,曹成茂,詹超,等. 仿生敲擊式山核桃破殼機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):257-264. Ding Ran, Cao Zhengmao, Zhan Chao, et al. Design and experiment of bionic-impact type pecan shell breaker[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 257-264. (in Chinese with English abstract)

[21] 閆茹,趙奎鵬,鄭甲紅,等. 擠壓式核桃破殼機(jī)參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)機(jī)化研究,2016,38(6):219-224.Yan Ru, Zhao Kuipeng, Zheng Jiahong, et al. The experimental study on walnut shell breaking machine with extrusion based on response surface method logy[J]. Journal of Agricultural Mechanization Research, 2016, 38(6): 219-224. (in Chinese with English abstract)

[22] 吳子岳. 綿核桃剝殼機(jī)的研制[J]. 包裝與食品機(jī)械,1995,13(2):1-5,66,77. Wu Ziyue. The design of cracking machine for soft walnut[J]. Packaging and Food Machinery, 199513 (2): 1-5, 66, 77. (in Chinese with English abstract)

[23] 劉明政,李長(zhǎng)河,張彥彬,等. 柔性帶差速擠壓核桃脫殼性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):99-107. Liu Mingzheng, Li Changhe, Zhang Yanbin, et al. Performance test of walnut shelling using flexible-belt and differential velocity extrusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (9): 99-107. (in Chinese with English abstract)

[24] Guner M E D,Dursun I G.Mechanical behaviour of hazelnut under compression loading[J]. Biosystems Engineering, 2003, 85(4): 485-491.

[25] Mohsenin N N. Physical Properties of Plant and Animal Materials[M]// Nuri N. Mohsenin.Physical properties of plant. New York: Gordon and Breach Science Publishers, 1986: 20-89.

[26] 史建新,趙海軍,辛動(dòng)軍. 基于有限元分析的核桃脫殼技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(3):185-188. Shi Jianxin, Zhao Haijun, Xin Dongjun. Technology for breaking walnut shell based on finite element analysis [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21 (3): 185-188. (in Chinese with English abstract)

[27] 曹成茂,蔣蘭,吳崇友,等. 山核桃破殼機(jī)加載錘頭設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(10):307-315. Cao Chengmao, Jiang Lan, Wu Chongyou, et al. Design and test on hammerhead for pecan shell-breaking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 307-315. (in Chinese with English abstract)

[28] 閆茹,高警,鄭甲紅,等. 基于Workbench的核桃破殼力學(xué)特性分析[J]. 農(nóng)機(jī)化研究,2014,36(10):38-41. Yan Ru, Gao Jing, Zheng Jiahong, et al. Analysis of mechanical properties of walnut shell based on Workbench [J]. Journal of Agricultural Mechanization Research, 2014, 36 (10): 38-41. (in Chinese with English abstract)

[29] Koyuncu M A, Kinci K E, Savran E. Cracking characteristics of walnut[J]. Bio systems Engineering, 2003, 87(3): 305-311.

[30] 胡國(guó)棟. 潛艇端部球面艙壁結(jié)構(gòu)性能研究[D]. 哈爾濱:哈爾濱工程大學(xué),2013. Hu Guodong. The Study on the Structural Performance of Spherical Bulkhead for Submarine End[D]. Harbin: Harbin Engineering University, 2013. (in Chinese with English abstract)

[31] 劉家寶,宋濤. 混凝土球殼非線性穩(wěn)定影響因素的有限元分析[J]. 建筑科學(xué),2017,33(3):1-6. Liu Jiabao, Song Tao. FEM analysis of stability of RC spherical shell considering non-linear factors[J]. Building Science, 2017, 33(3): 1-6. (in Chinese with English abstract)

Improving cracking characteristics and kernel percentage of walnut by optimal position of cutting on shell

Zheng Xia1,2, Zhang Enming1,2, Kan Za1,2, Zhang Hongwen1,2, Li Hongbin3, Chou Weixin1,2

(1.832000,; 2.832000,; 3.832000,)

In view of the difficulty of balancing the cracking shell rate and the whole kernel ratio existing in the traditional single mechanical cracking shell method, this paper conducted the static pressure test of cutting treatment of Xinjiang Xinfeng walnut shell before broken from the pretreatment perspective. In order to more fully reflect the main characteristics of walnuts, the physical properties of walnuts were analyzed. The three-dimensional model of walnuts was built as a thin sphere shell, and three-dimensional modeling was performed with a three-dimensional scanner to make it more similar to real walnut shape. And cutting pretreatment of the model of walnut shell was implemented. Through the finite element static analysis of non-pretreated model of walnuts, the effects of the position of the walnuts shell pretreatment, the magnitude of the loading force and the position of the loading force on the strain, stress and deformation were studied. Through the static pressure test study, it is known that shell breaking force for the untreated Xinfeng walnut when loading force is along the transverse diameter is 93 N larger than that along the edge diameter of walnut. The deformation required to break the shell along the transverse diameter is 0.46 mm greater than that required along the edge loading force. Untreated Xinfeng walnuts had a whole kernel rate of 86% when loading force was applied along the transverse diameter, and a whole kernel rate of 78% along the edge diameter. When the loading force was applied for the untreated Xinfeng walnuts along the transverse diameter, the whole kernel rate is 8 percentage point higher than that along the edge diameter. After the belly cut pretreatment, the breaking force and broken shell deformation of Xinfeng walnut were significantly reduced. When the loading position was coincident with the cutting position, the shell breaking force was reduced by 139 N, a decrease of 38.4%, and the breaking shell deformation was reduced by 0.37 mm, a decrease of 18.2%. When the direction of the loading force was perpendicular to the cut direction, the breaking force was decreased by 18 N, a decrease of 6.6%. The shell deformation was reduced by 0.11 mm, a reduction of 7%. When the loading position coincided with the cut position, the whole kernel rate for Xinfeng walnut pretreated was 12 percentage point higher than that for the untreated Xinfeng walnut. When the direction of the loading force was perpendicular to the direction of the cutting, the whole kernel rate of Xinfeng walnut pretreated withcutting belly was 8% higher than that of the untreated Xinfeng walnut. After the suture line cutting pretreatment, the breaking force of the walnut was obviously lower than that of the walnut without pretreatment. When the loading position coincided with the cut position, the breaking force was decreased by 32 N, and the reduction was 11.9%. The shell deformation was decreased by 0.21 mm, a decrease of 13.4%. When the loading force direction was perpendicular to the cut direction, the shell breaking force was reduced by 82 N, a reduction of 22.7%. The broken shell deformation was reduced by 0.16 mm with a reduction of 7.9%. When the direction of the loading force was perpendicular to the cutting direction, the percentage of the entire Xinfeng walnut after the pretreatment of the suture line cutting was 2 percentage point higher than that of the untreated Xinfeng walnut. When the loading position coincided with the cut position, the whole kernel rate of Xinfeng walnuts with the suture line cut pretreatment was 6% higher than that of untreated Xinfeng walnuts. The finite element static analysis was performed using the related parameters of static pressure test. The results showed that when the same force was applied, the cut pretreated walnuts produced larger strain, stress and deformation on the shell surface of the walnut model than the untreated. The large strain, stress and deformation of the shell surface of the walnut model generally occurred at the loading position or at the cut position. And the maximum strain, stress and deformation were generated on the surface of the walnut shell when the walnut cut position and the position of loading force were both at the walnut belly. It is noted that the shells of the walnuts pretreated are easier to be broken, and the broken position is generally at the loading position or the cut position; when the loading position and the cutting position are at the walnut belly, it is most conducive to cracking. Analysis showed that when the walnut shell is cracked from the belly, it is more conducive to cracking the walnut along the large gap, so as to ensure the walnut whole kernel rate. The results of finite element static analysis basically agree with that of the static pressure test. The study can provide effective technical support for the development of walnut cutting machine and walnut cracking machine.

finite element method; crack; cutting; walnut; pretreatment

10.11975/j.issn.1002-6819.2018.19.038

S266.4

A

1002-6819(2018)-19-0300-09

2018-05-05

2018-08-11

新疆兵團(tuán)工業(yè)及高新技術(shù)科技攻關(guān)與成果轉(zhuǎn)化計(jì)劃項(xiàng)目(編號(hào):2016AB003)

鄭 霞,副教授,博士,主要從事農(nóng)產(chǎn)品加工技術(shù)及裝備研究。Email:124899256@qq.com

鄭 霞,張恩銘,坎 雜,張宏文,李紅斌,丑維新. 適宜核桃殼劃口位置改善其破殼特性提高整仁率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):300-308. doi:10.11975/j.issn.1002-6819.2018.19.038 http://www.tcsae.org

Zheng Xia, Zhang Enming, Kan Za, Zhang Hongwen, Li Hongbin, Chou Weixin. Improving cracking characteristics and kernel percentage of walnut by optimal position of cutting on shell[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 300-308. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.038 http://www.tcsae.org

猜你喜歡
有限元
基于擴(kuò)展有限元的疲勞裂紋擴(kuò)展分析
非線性感應(yīng)加熱問(wèn)題的全離散有限元方法
TDDH型停車(chē)器制動(dòng)過(guò)程有限元分析
新型有機(jī)玻璃在站臺(tái)門(mén)的應(yīng)用及有限元分析
基于I-DEAS的履帶起重機(jī)主機(jī)有限元計(jì)算
基于有限元模型對(duì)踝模擬扭傷機(jī)制的探討
10MN快鍛液壓機(jī)有限元分析
磨削淬硬殘余應(yīng)力的有限元分析
基于SolidWorks的吸嘴支撐臂有限元分析
箱形孔軋制的有限元模擬
上海金屬(2013年4期)2013-12-20 07:57:18
主站蜘蛛池模板: 日韩天堂视频| 国产亚洲美日韩AV中文字幕无码成人| 沈阳少妇高潮在线| 午夜成人在线视频| 黄色网址手机国内免费在线观看| 黄色污网站在线观看| 手机在线看片不卡中文字幕| 亚洲狠狠婷婷综合久久久久| 九九这里只有精品视频| 亚洲va精品中文字幕| 国产又色又刺激高潮免费看| 免费a在线观看播放| 免费国产不卡午夜福在线观看| 中国毛片网| 亚洲AV永久无码精品古装片| 久久婷婷色综合老司机| 91精品人妻互换| 欧美天天干| 国产精品久久久免费视频| 中文字幕亚洲乱码熟女1区2区| 三上悠亚一区二区| 久久伊人操| 国产精品对白刺激| 精品日韩亚洲欧美高清a| 女人18毛片久久| 国产免费看久久久| 国产精品三级av及在线观看| 一本一道波多野结衣av黑人在线| hezyo加勒比一区二区三区| 一个色综合久久| 女人爽到高潮免费视频大全| 久久久精品无码一二三区| 亚洲天堂网在线播放| 色成人综合| 国产肉感大码AV无码| 国产视频一区二区在线观看| 国内自拍久第一页| 在线观看免费黄色网址| 日本91视频| 欧美伦理一区| 亚洲成人播放| 毛片免费在线视频| 黄色网页在线播放| 波多野结衣在线一区二区| 久久青草精品一区二区三区| 夜夜爽免费视频| 国产91精品最新在线播放| 亚洲精品自拍区在线观看| 久久香蕉国产线看观看亚洲片| 亚洲美女视频一区| 亚洲第七页| 国产一区二区三区免费| 亚洲品质国产精品无码| 午夜三级在线| 成人a免费α片在线视频网站| 国产精品自在线天天看片| 天天婬欲婬香婬色婬视频播放| 国产成年女人特黄特色毛片免 | 欧美一区二区人人喊爽| 蜜臀av性久久久久蜜臀aⅴ麻豆| 伊人91视频| 欧美日韩国产在线播放| 欧美精品不卡| 91精品人妻一区二区| 天堂av综合网| 亚洲国产综合精品一区| 亚洲色欲色欲www网| YW尤物AV无码国产在线观看| 欧美有码在线| 亚洲视频无码| 午夜视频在线观看区二区| 国产又粗又猛又爽| 欧美午夜在线播放| 国产一区二区三区日韩精品| 国产91小视频| 久久精品无码中文字幕| 日本一区二区三区精品国产| 国产精品熟女亚洲AV麻豆| 91青青草视频在线观看的| 99r在线精品视频在线播放| 丁香综合在线| AV无码国产在线看岛国岛|