季明東,李建平,葉章穎,朱松明
?
泡沫分離器去除養殖循環水中不同粒徑細微顆粒物的效果
季明東,李建平,葉章穎,朱松明※
(浙江大學生物系統工程與食品科學學院,杭州 310058)
為高效去除循環水養殖中的細微顆粒物,通過試驗優化射流式泡沫分離器的水力停留時間和進氣量,并結合相關理論研究分析不同粒徑區間顆粒物的去除情況。以孔徑125m轉鼓式微濾機出水口的水體作為泡沫分離原樣進行批處理試驗,以顆粒物去除率為指標優化水力停留時間和進氣量;以4個粒徑區間≤10、>10~50、>50~90和>90m的顆粒物質量濃度變化率為指標分析各區間的顆粒物去除情況。養殖水中細微顆粒物在泡沫分離時,細化氣泡和增加水力停留時間在提高去除率中會達到極值,水力停留時間和進氣量對顆粒物去除率有顯著影響,水力停留時間為2.0 min和進氣量為1.3 L/min時,去除率較高為(34.06%±4.37%);泡沫分離對粒徑≤90m的顆粒物都有較好的去除作用,且對粒徑≤10和>50~90m的顆粒物去除率相對較高,而對粒徑>90m的顆粒物去除較困難。
養殖;顆粒物;循環水;泡沫分離;水力停留時間;進氣量;粒徑分布
2016年中國水產品養殖產量5 142萬t,占全國水產品總量的74.5%,人均占有量達到49.9 kg[1]。近年來在國家“節能減排”政策的指導下,工廠化循環水養殖(recirculating aquaculture system,RAS)以其占地面積少、養殖周期短、飼料系數低、水產品產量和質量高等優勢得到了快速發展[2-4]。RAS水體中的顆粒物包括殘餌、糞便、魚體黏液和老化的生物絮體等[5-7],通常粒徑分布在3~300m,而其中95%以上的顆粒物粒徑小于20m,占顆粒物總質量的47%以上[8]。通常顆粒物粒徑100m以上的可通過沉淀池、旋流分離、弧形篩和轉鼓式微濾機等進行去除,當前對細微顆粒物的去除技術較落后,制約著養殖效益的提高,未去除的細微顆粒物會在異養細菌作用下發生礦化作用消耗溶解氧并產生氨氮從而加重生物濾池的有機負荷,同時水體中細微顆粒物積累也會影響養殖對象的生長[9-11]。
泡沫分離是一種簡單有效、低成本的細微顆粒物去除方法[12-14],還有CO2脫氣并增加水體溶解氧的作用,若與臭氧發生器聯用,還可起到殺菌消毒的作用[15-17],目前對RAS中細微顆粒物泡沫分離的研究還停留在試驗對比和工藝參數的優化上。RAS中顆粒物去除方法的設計和選擇,多依靠經驗設計缺乏理論支撐,另外還未有針對養殖水中細微顆粒物泡沫分離的理論研究。
研究表明養殖水中顆粒物粒徑的數量分布符合冪定律,但對顆粒物不同去除方法處理前后粒徑分布的研究較少[18-19]。本文以細微顆粒物的去除率為試驗指標優化射流式泡沫分離器的水力停留時間(hydraulic retention time,HRT)和進氣量(air inflow,AI);在顆粒物粒徑分析的基礎上,結合相關理論研究分析不同HRT和AI組合下各粒徑區間的顆粒物泡沫分離效果,旨在為RAS中顆粒物的高效去除和泡沫分離裝置的優化上提供參考。
如圖1所示,RAS試驗系統包括6個直徑為1.0 m深0.8 m的聚乙烯(polyethylene,PE)養殖桶,水處理量為10 m3/h、濾網孔徑約為125m的轉鼓式微濾機,容積為50 L的射流式泡沫分離器,容積為1.35 m3的移動床式生物濾池兩級,以及溶氧池和紫外殺菌桶。單個養殖桶的水體為0.5 m3,投放珍珠龍膽石斑魚30尾,養殖水體的水溫維持在25 ℃,鹽度為21‰,溶氧量維持7 mg/L以上,pH值維持在7.0~8.0之間。RAS每日循環15次,定期補充新水和通過小蘇打調節水體的pH值。每天早上08:00投飼,飼料是由魚粉、豆粕、魚油和維生素等組成。在石斑魚平均每尾達到300 g時進行泡沫分離試驗,此時養殖密度約為18 kg/m3。

1. PE養殖桶 2. 進水管 3. 微濾機 4. 循環水泵 5. 射流式泡沫分離器6. 一級生物濾池 7. 二級生物濾池 8. 純氧曝氣盤 9. 紫外殺菌10. 回水管
射流式泡沫分離器的結構如圖2所示,主體結構包括進水口、出水口、泡沫分離容器和泡沫口等。射流水泵為海水射流泵,可有效地減緩海水腐蝕。射流式泡沫分離器是通過射流水泵引水體經過文丘里管產生大量的氣泡再通入泡沫分離容器中,氣泡在上浮過程中依靠其表面能吸附水中的生物絮體、纖維素和蛋白質(表面活性物質)等顆粒物,將這些顆粒物帶到水面并產生大量的泡沫,最后通過泡沫口排出泡沫廢水,從而實現顆粒物的去除[20-21]。

1. 文丘里射流器 2. 射流出水口 3. 泡沫分離容器 4. 泡沫口 5. 進水口 6. 射流進水口 7. 出水口 8. 射流水泵
在礦業浮選、水處理等領域,關于氣浮的理論研究認為顆粒物泡沫分離過程包括氣泡顆粒之間碰撞、黏附,氣泡顆粒絮體在氣液界面產生泡沫(起泡),另外還需確保氣泡顆粒絮體在水體和泡沫層的穩定性,氣泡顆粒絮體在水體中可能會發生脫附過程[22]。碰撞過程是氣泡與顆粒在氣浮區內相互靠近并發生碰撞接觸的過程;碰撞效率受顆粒粒徑、氣泡尺寸、遠程水力學條件等因素影響[23]。黏附過程是氣泡顆粒碰撞接觸后,氣泡顆粒間的分離距離在表面力作用的范圍內,此時顆粒在氣泡表面滑動,氣泡顆粒間的液膜在表面力作用下變薄,當達到臨界厚度時液膜破裂,隨后氣泡、顆粒和水體溶液形成三相接觸線,三相接觸線不斷擴大至氣泡顆粒表面穩定潤濕周邊的形成;黏附效率主要受氣泡顆粒的表面化學特性、液體溶液的化學特性、表面力的影響[24]。脫附過程是指顆粒物在外力作用下離開氣泡表面回到水體溶液中的過程;脫附過程中主要作用力包括由氣泡顆粒液膜產生的毛細力、顆粒重力和湍流加速度引起的離心力,對于細微顆粒物而言,脫附力較小,因此實際細微顆粒物泡沫分離的脫附效率較低[25-26]。起泡受水體溶液的表面張力、表面黏度和表面活性劑的影響;泡沫穩定性影響因素是泡沫大小、毛細力,以及由重力、不同泡沫間傳質引起的泡沫變大或泡沫合并等[27-28]。
1.2.1 試驗設計
為提高細微顆粒物的去除率,通過試驗優化射流式泡沫分離器的運行參數,包括水力停留時間HRT和進氣量AI 2個因素。試驗所用的射流式泡沫分離器,設計時的水處理量為1.0~2.0 m3/h,容積為50 L,因此設計HRT分別為1.5、2.0和2.5 min;該裝置的最大AI為2.0 L/min,但當AI為2.0 L/min時,泡沫口的出水量較大造成養殖水體浪費嚴重,因此設計AI分別為1.0、1.3和1.6 L/min。
引RAS試驗系統中微濾機出水口的養殖水體進入儲水箱中,作為泡沫分離的原樣進行批處理試驗。顆粒物質量濃度的測定按照國家標準方法(GB17378.4-1998)進行,所用的烘干設備是DGX-9073B-1(上海福瑪儀器設備有限公司);循環水式真空泵是SHB-IIIA(上海豫康科教儀器設備有限公司);質量測量儀器是Sartorius BAS1245(北京賽多利斯科學儀器有限公司),精度為0.0001 g;微孔濾膜(上海興亞凈化材料廠)的孔徑為 0.45m。顆粒物粒徑分布是通過丹東百特儀器有限公司的Bettersizer3000PLUS激光粒度儀測定。
原樣的顆粒物質量濃度為(30.33±4.54)mg/L,顆粒物粒徑的體積和數量分布如表1所示,顆粒物粒徑劃分為4個區間≤10、>10~50、>50~90和>90m。原樣的粒徑分布范圍是1~200m,其中98%以上的顆粒物粒徑小于10m。

表1 原樣中顆粒物粒徑的體積和數量分布
原樣經泡沫分離處理后出水口水樣的顆粒物質量濃度為out,單位為mg/L;顆粒物粒徑區間體積分布為D(為1、2、3和4分別代表粒徑區間≤10、>10~50、>50~90和>90m),即為各粒徑區間的顆粒物體積占顆粒物總體積的百分數;認為養殖水體經過微濾機過濾后的細微顆粒物密度均勻,則粒徑區間體積分數D即為該粒徑區間的質量分數M,從而可計算得到粒徑區間的顆粒物質量濃度C,如公式(1)所示。

泡沫分離原樣的各粒徑區間顆粒物質量濃度分別為(6.56±0.98)、(8.68±1.30)、(7.75±1.16)和(7.35±1.10)mg/L。
1.2.2 試驗指標
運行參數HRT和AI優化的試驗指標是顆粒物去除率(%),計算方法如公式(2)所示。原樣的顆粒物質量濃度以0表示,out為泡沫分離處理后出水口水樣的顆粒物質量濃度。

4個粒徑區間顆粒物的去除情況是以各粒徑區間的顆粒物質量濃度變化率為指標,單位為%。計算方法如公式(3)所示。有正負,正表示該粒徑區間顆粒物質量濃度下降,負為該粒徑區間顆粒物質量濃度增加。

式中C-0為泡沫分離原樣的粒徑區間的顆粒物質量濃度,mg/L;C-out為泡沫分離后粒徑區間的顆粒物質量濃度,mg/L。
1.2.3 數據處理
試驗數據在Excel2016中整理和計算,在SPSS20.0軟件中進行數據分析。對泡沫分離運行參數HRT和AI的優化,以顆粒物去除率為試驗指標進行單(雙)因素分析,以LSD法進行多重比較;4個粒徑區間顆粒物的去除情況,以各粒徑區間顆粒物質量濃度變化率為試驗指標,以HRT和AI的組合為單因素使用Duncan法進行多重比較。多重比較的顯著性水平為0.05,>0.05時無顯著性差異,<0.05時有顯著性差異。
運行參數HRT和AI的優化,以顆粒物去除率為因變量進行雙因素方差分析。表2為HRT和AI影響下的顆粒物去除率。主體間效應檢驗得出HRT和AI對顆粒物去除率均有顯著影響(<0.05),且AI的影響極顯著(<0.01),而其交互作用HRT×AI對顆粒物去除率無顯著影響(>0.05)。可固定進氣量AI,以HRT為單因素進行兩兩比較,得出在同一AI下HRT影響的顆粒物去除率之間的差異性。

表2 水力停留時間和進氣量影響下的顆粒物去除率
注:同一列上的不同字母表示差異顯著(0.05)。
Note: The different lowercase letters in the same column represent significant differences (0.05).
在AI為1.0或1.6 L/min時,各HRT的顆粒物去除率之間無顯著差異;在AI為1.3 L/min時,HRT為1.5 min的去除率與2.0、2.5 min之間有顯著差異,而HRT為2.0和2.5 min的去除率之間無顯著差異。
因對顆粒物去除率的雙因素分析得出AI的影響極顯著,在以HRT和AI組合為單因素分析各粒徑區間的顆粒物質量濃度變化率時,兩兩比較的結果僅給出在同一HRT下AI影響的之間的差異性。表3為4個粒徑區間顆粒物質量濃度變化率。

表3 4個粒徑區間顆粒物質量濃度變化率
注:同一行上的不同字母表示差異顯著(<0.05)。
Note: The different lowercase letters in the same row represent significant differences (<0.05).
對于粒徑≤10m的顆粒物,隨著HRT的增加AI為1.0和1.3 L/min時的顆粒物質量濃度變化率在增大;HRT為1.5 min時各AI的變化率之間無顯著差異;HRT為2.0和2.5 min時,隨著AI的增大顆粒物質量濃度變化率也增大。
對于粒徑>10~50m的顆粒物,HRT為1.5 min時各AI的顆粒物質量濃度變化率之間有顯著差異;且AI為1.3 L/min時的變化率均大于AI為1.0和1.6 L/min時任意HRT下的變化率。
對于粒徑>50~90m的顆粒物,隨著HRT的增加AI為1.0和1.3 L/min時的顆粒物質量濃度變化率在增大。
對于粒徑>90m的顆粒物,HRT為2.0 min時各AI的顆粒物質量濃度變化率之間有顯著差異,HRT為2.5 min時各AI的變化率之間無顯著差異。
水力停留時間(HRT)通常是所有水處理設施設備在設計和運行時的重要參數[29],如沉淀池和生物濾池等的HRT越長,水處理效果越好。但在實際生產中,HRT越長意味著設施設備龐大、占地和成本較高,這對投資高和以節水節地為目的的RAS來說無疑是不利的[7]。泡沫分離器在設計和運行時,應保證細微顆粒物去除率的前提下盡量縮短HRT。進氣量AI影響著文丘里管射流時產生的氣泡大小,有研究得出當射流器和射流水泵相同時AI越大射流形成的氣泡直徑越大[30]。Shahbazi等[31]和Tatu等[32]對泡沫分離理論上的研究表明,細微顆粒物泡沫分離效率主要取決于氣泡和顆粒之間的碰撞效率,并提出細化氣泡可以提高泡沫分離效率。另外在對養殖水中顆粒物泡沫分離的研究也表明,細化氣泡能提高泡沫分離效率[15, 20-21]。
由表2顯示,在AI為1.0 L/min時,隨著HRT的增加顆粒物去除率也在增大,當AI較小時氣泡尺寸小,氣泡浮力也較小,吸附了顆粒物的氣泡在泡沫分離容器內上升所需的時間也越長,當小氣泡與顆粒物有充分的碰撞接觸和上升時間時能夠有效地提高顆粒物去除率。在AI為1.3 L/min時,隨著HRT的增加,顆粒物去除率也增大,且HRT為2.0和2.5 min的去除率無差異,此時氣泡尺寸中等,認為隨著HRT的增加,顆粒物去除率會達到一個極值。在AI為1.6 L/min時,顆粒物去除率波動較大,可能的原因是此時氣泡尺寸大,界面能小,氣泡和顆粒物碰撞接觸后形成的氣泡顆粒絮體穩定性較差。
HRT的增加在一定程度上能夠提高細微顆粒物去除率,尤其是在氣泡尺寸較小的情況下,但是去除率會達到一個極值,這個極值和所處理水體中的顆粒物性質密切相關。Suzuki等[14]、Lei等[21]和Chen等[33]通過泡沫分離試驗研究表明養殖水中的顆粒物去除率與顆粒有機物即表面活性物質有關,養殖水體中顆粒有機物的比例越高,越有利于顆粒物的去除。表面活性物質也是氣泡和顆粒物碰撞黏附后形成的氣泡顆粒絮體在氣液界面形成穩定的泡沫并實現顆粒物去除的基本條件[25]。這也說明養殖水中的顆粒物能夠進行泡沫分離的絕大多數是有機物,并且去除率存在極值。在本試驗條件下,射流式泡沫分離器的運行參數HRT為2.0 min和AI為1.3 L/min時,去除率較高為(34.06%±4.37%)。認為養殖水中細微顆粒物泡沫分離時,細化氣泡和增加HRT在提高去除率中會達到極值,另外氣泡越細小達到較高去除率的情況下所需HRT較長。
Timmons[13]根據泡沫分離與表面活性劑理論,預測泡沫分離能夠去除的顆粒物粒徑小于30m,Chen等[34]表明未經泡沫分離的養殖水中顆粒物的平均粒徑與泡沫分離后泡沫水中的相同為10.6m,這說明能通過泡沫分離去除的顆粒物粒徑分布范圍較寬。Brambilla等[6]對攪拌混合式泡沫分離器的研究發現顆粒物粒徑大于60m和小于1.2m的去除率較高,對粒徑1.2~60m之間的顆粒物去除率較低,表明養殖水中顆粒物泡沫分離的去除率與顆粒粒徑密切相關。
3.2.1 粒徑≤10m的顆粒物質量濃度變化率
對于粒徑≤10m的顆粒物,各HRT和AI組合下的顆粒物質量濃度變化率均為正。多重比較結果表明對于粒徑≤10m的顆粒物,AI影響的氣泡尺寸是該粒徑區間顆粒物去除率高低的關鍵因素。粒徑≤10m的顆粒物因重力較小容易吸附在大氣泡的表面,并且在AI較大時泡沫分離容器內的湍動能較大也有利于提高氣泡和顆粒物之間碰撞效率[22]。因此認為AI為1.6 L/min時的大氣泡對粒徑≤10m的顆粒物去除效果較好。
3.2.2 粒徑>10~50m的顆粒物質量濃度變化率
對于粒徑>10~50m的顆粒物,HRT為1.5 min和AI為1.0 L/min時顆粒物質量濃度變化率為負,可能的原因是吸附了10~50m顆粒物的小氣泡在HRT較小時,因浮力小無法上升到氣液界面形成泡沫并去除。在同一HRT下,AI為1.3 L/min時粒徑>10~50m的顆粒物質量濃度變化率均較大,表明此時中等尺寸氣泡對該粒徑區間顆粒物的去除效果較好;而AI為1.6 L/min時的大氣泡去除效果較差。
3.2.3 粒徑>50~90m的顆粒物質量濃度變化率
對于粒徑>50~90m的顆粒物,各HRT和AI組合下的顆粒物質量濃度變化率也均為正值。AI為1.0和1.3 L/min時,粒徑>50~90m的顆粒物質量濃度變化率隨著HRT的增加而增大,并且AI為1.0 L/min時粒徑>50~90m的顆粒物質量濃度變化率增加明顯。AI為1.3和1.6 L/min時,粒徑>50~90m的顆粒物在較小的HRT下就有較好的去除效果。總體上泡沫分離對粒徑>50~90m的顆粒物去除較好。
3.2.4 粒徑>90m的顆粒物質量濃度變化率
粒徑>90m的顆粒物質量濃度變化率波動較大,并且多個HRT和AI組合下的顆粒物質量濃度變化率出現負值。可能的原因有:氣泡難以吸附粒徑>90m的顆粒物以形成穩定的氣泡顆粒絮體;即使形成了氣泡顆粒絮體,在上升過程中,由于顆粒物重力較大,顆粒易從氣泡表面脫附;另外氣泡顆粒絮體在泡沫分離容器內的氣液界面上難以形成穩定的泡沫并進行去除。因此表現為粒徑>90m的顆粒物在泡沫分離容器內上下移動,從而使得顆粒物質量濃度變化率出現負值且波動較大。AI為 1.6 L/min時顆粒物質量濃度變化率均為負值且波動最大,這說明大氣泡對粒徑>90m的顆粒物去除效果較差,可能是由于大氣泡界面能小,大氣泡和粒徑>90m的顆粒物之間碰撞黏附效率極低。總體上泡沫分離對粒徑>90m的顆粒物去除難度較大。
對各粒徑區間顆粒物質量濃度變化率的分析,認為HRT為2.5 min時顆粒物去除率波動較大(標準差大),可能的原因是泡沫分離對粒徑>90m的顆粒物去除難度較大。對于養殖水中細微顆粒物的泡沫分離,氣泡尺寸遠大于顆粒物粒徑,形成的氣泡顆粒絮體可能為包裹形(顆粒物在氣泡內)或附著形(顆粒物附著在氣泡表面形成穩定的三相接觸線)[28-29],并且氣泡尺寸和顆粒粒徑的相對大小決定了氣泡、顆粒之間的碰撞效率,這也是不同AI下顆粒物去除率差異較大的主要原因。另外泡沫分離對粒徑≤10和>50~90m的顆粒物相對于粒徑>10~50m的去除效果較好(表3可得出粒徑≤10和>50~90m的顆粒物質量濃度平均變化率大于粒徑>10~50m的顆粒物),這與Brambilla等[6]研究結果相似。
在HRT為2.0 min和AI為1.3 L/min時,射流式泡沫分離器泡沫口排出的泡沫水中,顆粒物粒徑分布范圍在1~300m,且95%以上的顆粒物粒徑小于10m。Chen等[34]表明未經泡沫分離的養殖水中顆粒物平均粒徑與泡沫分離后泡沫水中的顆粒物平均粒徑相同為10.6m。與Chen等[33]研究結論不同的是,泡沫水中存在部分顆粒物的粒徑大于從原樣中分離出的顆粒物粒徑,其原因是氣泡顆粒絮體起泡后的泡沫在破裂合并時引起了顆粒物凝聚。
在循環水養殖(RAS)中轉鼓式微濾機和泡沫分離器聯用對養殖水中的顆粒物進行去除是當前常用的方法,細微顆粒物的泡沫分離去除對穩定水質和提高養殖效益具有重要作用。本試驗得出:
1)細化氣泡和增加水力停留時間(HRT)在提高細微顆粒物的去除率中會達到極值,并且氣泡越細小要達到較高去除率時所需的HRT較長,需結合顆粒物性質來設計泡沫分離參數。
2)運行參數HRT和進氣量(AI)對顆粒物去除率有顯著影響,在HRT為2.0 min和AI為1.3 L/min時,對孔徑125m的微濾機過濾后的養殖水進行泡沫分離時,去除率較高為(34.06%±4.37%)。
3)泡沫分離對粒徑≤90m的顆粒物有較好的去除效果,尤其是對粒徑≤10m和>50~90m的顆粒物去除率較高,而對粒徑>90m的顆粒物去除較困難。
為提高RAS中細微顆粒物泡沫分離的去除率,應當從機理上深入,尤其是對氣泡特性和顆粒物性質的研究。如何針對顆粒物性質和粒徑分布來選定氣泡尺寸,以及在保證養殖安全的前提下如何添加臭氧達到既能提高顆粒物去除效率又有殺菌消毒作用,是下一步研究的重點。
[1] 農業部漁業漁政管理局. 中國漁業統計年鑒[M]. 北京:中國農業出版社,2017:21.
[2] 車軒,劉晃,吳娟,等. 我國主要水產養殖模式能耗調查研究[J]. 漁業現代化,2010,37(2):9-13.Che Xuan, Liu Huang, Wu Juan, et al. Investigation into energy consumption of aquaculture in China[J]. Fishery Modernization, 2010, 37(2): 9-13. (in Chinese with English abstract)
[3] 張宇雷,吳凡,王振華,等. 超高密度全封閉循環水養殖系統設計及運行效果分析[J]. 農業工程學報,2012,28(15):151-156. Zhang Yulei, Wu Fan, Wang Zhenhua, et al. Engineering design and performance evaluation of super highly density recirculating aquaculture system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 151-156. (in Chinese with English abstract)
[4] 劉晃,陳軍,倪琦,等. 基于物質平衡的循環水養殖系統設計[J]. 農業工程學報,2009,25(2):161-166. Liu Huang, Chen Jun, Ni Qi, et al. Design of a recirculating aquaculture system based on mass balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 161-166. (in Chinese with English abstract)
[5] 于冬冬,倪琦,莊保陸,等. 氣提式砂濾器在水產養殖系統中的水質凈化效果[J]. 農業工程學報,2014,30(5):57-64. Yu Dongdong, Ni Qi, Zhuang Baolu, et al. Effect in water purification by airlift sand filter in aquaculture system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 57-64. (in Chinese with English abstract)
[6] Brambilla F, Antonini M, Ceccuzzi P, et al. Foam fractionation efficiency in particulate matter and heterotrophic bacteria removal from a recalculating seabass () system[J]. Aquacultural Engineering, 2008, 39(1): 37-42.
[7] 張成林,楊菁,張宇雷,等. 去除養殖水體懸浮顆粒的多向流重力沉淀裝置設計及性能[J]. 農業工程學報,2015,31(增刊1):53-60. Zhang Chenglin, Yang Jing, Zhang Yulei, et al. Design and performance of multiway gravity device on removing suspended solids in aquaculture water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 53-60. (in Chinese with English abstract)
[8] Chen S, Timmons M B, Aneshansley D J, et al. Suspended solids characteristics from recirculating aquaculture systems and design implications[J]. Aquaculture, 1993, 112(2/3): 143-155.
[9] Maddi B, Diego M, John B. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges[J]. Aquacultural Engineering, 2010, 51(6): 26-35.
[10] Zhu S, Chen S. An experimental study on nitrification biofilm performances using a series reactor system[J]. Aquacultural Engineering, 1999, 20(4): 245-259.
[11] Bullock G L, Summerfelt S T, Noble A C, et al. Ozonation of a recirculating rainbow trout culture system. I. Effects on bacterial gill disease and heterotrophic bacteria[J]. Aquaculture, 1997, 158: 43-55.
[12] Chen S, Timmons M B, Bisogni J, et al. Suspended solids removed by foam fractionation[J]. Progressive Fish-Culturist, 1992, 55(2): 69-75.
[13] Timmons M B. Use of foam fractionators in aquaculture [C]//Timmons M B, Losordo T M. Aquaculture Water Reuse Systems: Engineering Design and Management. Amsterdam: Elsevier Science BV, 1994: 247-279.
[14] Suzuki Y, Maruyama T, Numata H. Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel: Towards zero emission[J]. Aquacultural Engineering, 2003, 29(3): 165-182.
[15] Barrut B, Blancheton J P, Champagne J Y, et al. Foam fractionation efficiency of a vacuum airlift-application to particulate matter removal in recirculating systems[J]. Aquacultural Engineering, 2013, 54(54): 16-21.
[16] Barrut B, Blancheton J P, Champagne J Y, et al. Mass transfer efficiency of a vacuum airlift-application to water recycling in aquaculture systems[J]. Aquacultural Engineering, 2012, 46(1): 18-26.
[17] Park J, Kim Y, Kim P K, et al. Effects of two different ozone doses on seawater recirculating systems for black sea bream(Bleeker): Removal of solids and bacteria by foam fractionation[J]. Aquacultural Engineering, 2011, 44(1): 19-24.
[18] Patterson R, Watts K. Micro-particles in recirculating aquaculture systems: Particle size analysis of culture water from a commercial Atlantic salmon site[J]. Aquacultual Engineering, 2003, 28(3/4): 99-113.
[19] Brinker A, Koppe W, Rosch R. Optimized effluent treatment by stabilized trout faeces[J]. Aquaculture, 2005, 249(1/2/3/4): 125-144.
[20] Chen S, Timmons M B, Bisogni J, et al. Suspended solids removed by foam fractionation[J]. Progressive Fish-Culturist, 1992, 55(2): 69-75.
[21] Lei P, Oh S Y, Jo J Y. Protein removal by a foam fractionator in simulated seawater aquaculture system[J]. Ocean and Polar Research, 2003, 25(3): 269-275.
[22] Nguyen A V, An-Vo D A, Tran-Cong T, et al. A review of stochastic description of the turbulence effect on bubble- particle interactions in flotation[J]. International Journal of Mineral Processing, 2016, 156: 75-86.
[23] Nguyen C M, Nguyen A V, Miller J D. Computational validation of the Generalized Sutherland Equation for bubble– particle encounter efficiency in flotation[J]. International Journal of Mineral Processing, 2006, 81: 141-148.
[24] Xing Y, Gui X, Pand L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science, 2017, 246: 105-132.
[25] Wang G, Evans G M, Jameson G J. Bubble-particle detachment in a turbulent vortex I: Experimental[J]. Minerals Engineering, 2016, 92: 196-207.
[26] Ralston J, Fornasiero D, Hayes R. Bubble–particle attachment and detachment in flotation[J]. International Journal of Mineral Processing, 1999, 56(1): 133-164.
[27] Yang Q, Wu Z, Zhao Y, et al. Enhancing foam drainage using foam fractionation column with spiral internal for separation of sodium dodecyl sulfate[J]. Journal of Hazardous Materials, 2011, 192(3): 1900-1904.
[28] Wang J, Nguyen A V, Farrokhpay S. A critical review of the growth, drainage and collapse of foams[J]. Advances in Colloid and Interface Science, 2016, 228: 55-70.
[29] Johan K, Ander W, Hakan J, et al. Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden[J]. Advances in Water Resources, 2007, 30(4): 838-850.
[30] 惠恒雷. 射流發泡制造微氣泡技術試驗研究[D]. 徐州:中國石油大學,2011. Hui Henglei. Experimental Study on Technology of Micro-bubble Jet Foam [D]. Xuzhou: China University of Petroleum, 2011. (in Chinese with English abstract)
[31] Shahbazi B, Rezai B, Javad Koleini S M. Bubble–particle collision and attachment probability on fine particles flotation[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(6): 622-627.
[32] Tatu M, John R, Daniel F. The limits of fine particle flotation[J]. Minerals Engineering, 2010, 23(5): 420-437.
[33] Chen S, Timmons M B, Bisogni J, et al. Protein and its removal by foam fractionation[J]. The Progressive Fish- Culturist, 1993, 55(2): 76-82.
[34] Chen S, Stetchey D, Malone R F. Suspended solids control in Recirculating Aquaculture Systems[C]//Timmons M B, Losordo T M. Aquaculture Water Reuse Systems: Engineering Design and Management. Amsterdam: Elsevier Science BV, 1994: 61-100.
Removing effect of fine particles with different sizes by foam fractionator in recirculating aquaculture system
Ji Mingdong, Li Jianping, Ye Zhangying, Zhu Songming※
(310058,)
In recirculating aquaculture system (RAS), the main solid wastes are uneaten feed, faeces and bacterial flocs. Solid wastes can decrease water quality and aquacultural benefit if without removed effectively. A higher removal efficiency of solid wastes is the guarantee for improving the environmental sustainability of RAS, and it will promote the development and utilization of RAS in China. The larger particles can be removed by settling basin, drum filter, swirl separator, and so on. But it’s difficult to remove fine particles accounting for 95% of total solid wastes smaller than 20m and the heterotrophic bacteria can use particulate organic matter for mineralization process. This process not only consumes oxygen, but also produces ammonia, which may aggravate the burden of biofilter for autotrophic nitrifying bacteria to remove ammonia and nitrite. For removing fine particles efficiently, Venturi type of foam separator was optimized by the testing of hydraulic retention time and the air inflow, and combined with relevant theory research, the removal situation of particles with different size ranges was analyzed. In this experiment, the water as original sample from the outlet of drum filter with microscreen mesh size of 125m was introduced for batch foam fractionation. The mass concentration of particles in the original sample was (30.33±4.54) mg/L, and the size of more than 98% of them was smaller than 10m. The removal efficiency of fine particles was applied as the index for optimization of hydraulic retention time and the airinflow. According to the particle size distribution of the original sample, all particles were divided to 4 size ranges, i.e. ≤10, >10-50, >50-90 and >90m, and their concentrations in original sample were (6.56±0.98), (8.68±1.30), (7.75±1.16) and (7.35±1.10) mg/L respectively. And the changing rate of fine particles’ concentration for each interval was applied as the index for analyzing the removal situation of particles with different size ranges. The results showed that the hydraulic retention time and air inflow had significant influences on the removal efficiency of fine particles. When the hydraulic retention time was 2.0 min and the air inflow was 1.3 L/min, the removal efficiency of fine particles was the highest, which was 34.06%±4.37%, and particles size range of the foam wastewater discharged from the foam separator was 1-300m, more than 95% of which was smaller than 10m. Foam fractionation had a good effect on removing the particles whose size was ≤90m, and the removal efficiency of the particles with the size of ≤10 and >50-90m was relatively higher than that of >10-50m, while it was difficult to remove the particles with the size of >90m. Removal efficiency can be increased to some extent with the decreasing of bubbles size and the increasing of hydraulic retention time, but there exists an extreme value, and it suggests that the design and operation of foam fractionation is determined by the nature of the particles and size distribution in the aquaculture water. For the sake of improving the fine particles removal efficiency of foam fractionation in RAS, the fractionation mechanism should be further studied, especially the properties of bubbles and particles, such as how to select the bubble size according to the properties and size distribution of particles in different operating conditions of RAS, and how to apply ozone, a kind of strong oxidizer that has been proved to be efficient for improving the removal of solids in actual RAS.
aquaculture; particles; recirculating water; foam fractionation; hydraulic retention time; air inflow; particle size distribution
10.11975/j.issn.1002-6819.2018.19.026
S238
A
1002-6819(2018)-19-0202-06
2018-04-10
2018-08-13
國家水體污染控制與治理科技重大專項課題(2014ZX07101);浙江省重大科技專項重點農業項目(2015C02010)
季明東,博士生,主要從事設施水產裝備研究。 Email:mingdongji_zju@163.com
朱松明,教授,博士生導師,主要從事農業生物環境工程與食品非熱加工新技術研究。Email:zhusm@zju.edu.cn
季明東,李建平,葉章穎,朱松明.泡沫分離器去除養殖循環水中不同粒徑細微顆粒物的效果[J]. 農業工程學報,2018,34(19):202-207. doi:10.11975/j.issn.1002-6819.2018.19.026 http://www.tcsae.org
Ji Mingdong, Li Jianping, Ye Zhangying, Zhu Songming. Removing effect of fine particles with different sizes by foam fractionator in recirculating aquaculture system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 202-207. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.026 http://www.tcsae.org