999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Classification of Phase Portraits of Z2- EquivariantPlanar Hamiltonian Vector Fields of degree 7(Ⅷ)*

2018-07-26 09:48:38
楚雄師范學院學報 2018年3期

(School of mathematics and statistics, Chuxiong Normal University, Yunnan Chuxiong, 675000, China)

Abstract:In this paper, applying the method of qualitative analysis of differential equations, we classify the parameter space and phase portraits of a Z2-equivariant planar Hamiltonian vector field of degree 7 and get 33 phase portraits.

Key words:Z2 equivariant property; planar Hamiltonian vector field; singular point; phase portrait

In recent decades, thephase portraits of planarZq- equivariant Hamiltonian vector fields of degree 7 have been studied [1~4], but we still have many works to do . In this paper, we classify the phase portraits of following planar Hamiltonian vector fields of degree 7

(1)

and get 33 phase portraits ,wherekis a positive parameter .

1 Discussion on the Singular Points

Leta=k,b=k+0.2,c=k+0.3,l=k,m=k+0.25 andn=k+0.3, then the system has 49 singular points: (0,0), (±a,0),(±b,0),(±c,0),(0,±l),(0,±m),(0,±n),(±a,±l),(±b,±l),(±c,±l),(±a,±m),(±b,±m),(±c,±m),(±a,±n),(±b,±n)and(±c,±n).

Because the system (1) is ofZ2- equivariant property, we will discuss the singular points in the first and second quadrants.

The Jacobian of this system is

in which

φ1(x)= -(x2-k2)[x2-(k+0.2)2][x2-(k+0.3)2]-2x2[x2-(k+0.2)2][x2-(k+0.3)2]

-2x2(x2-k2)[x2-(k+0.3)2]-2x2(x2-k2)[x2-(k+0.2)2],

φ2(y)= (y2-k2)[y2-(k+0.25)2][y2-(k+0.3)2]

+2y2[y2-(k+0.25)2][y2-(k+0.3)2]

+2y2(y2-k2)[y2-(k+0.3)2]+2y2(y2-k2)[y2-(k+0.25)2].

Investigating the Jacobians of these singular points, we have the following results:

Theorem1 The singular points (0,0), (±b,0),(0,m),(±a,l),(±c,l),(±b,m),(±a,n)and (±c,n) are center, and the others are saddle points.

2 Phase Portraits of the System (1)

The Hamiltonian of the system is

H(x,y)=[3x8-(12k2+4k+0.52)x6+(18k4+12k2+3k2+0.36k+0.0216)x4]/24

-(k6+k5+0.37k4+0.06k3+0.0036k2)x2/2-(12k6+13.2k5+5.43k4+0.99k3+0.0675k2)y2/24

+[(18k4+13.2k3+3.63k2+0.495k+0.03375)y4-(12k2+4.4k+0.61)y6+3y8]/24.

Obviously, the functionH(x,y) satisfies the following equalities

H(x,y)=H(x,0)+H(0,y),

H(±a,0)=k4[3k4+2k3+0.26k2-6(k+0.2)2(k+0.3)2]/24,

H(±b,0)=-[(k+0.2)8-2(k+0.2)6(2k2+0.6k+0.09)+6k2(k+0.2)4(k+0.3)2]/24,

H(±c,0)=-[(k+0.3)8-2(k+0.3)6(2k2+0.4k+0.04)+6k2(k+0.3)4(k+0.2)2]/24,

H(0,l)=k4[3k4+2.2k3+0.305k2-6(k+0.25)2(k+0.3)2]/24,

H(0,m)=-[(k+0.25)8-2(k+0.25)6(2k2+0.6k+0.09)+6k2(k+0.25)4(k+0.3)2]/24,

H(0,n)=-[(k+0.3)8-2(k+0.3)6(2k2+0.5k+0.0625)+6k2(k+0.25)2(k+0.3)4]/24.

Comparing the Hamiltonians of the singular points, we obtain the following outcomes.

Theorem2 There are 33 phase portraits of system (1) shown in Fig.1 whenkseparately

belongs to the following intervals : (1)k∈(0,0.05), (2)k=0.05, (3)k∈(0.05,0.114716),

(4)k=0.114716, (5)k∈(0.114716,0.17027), (6)k=0.17027,

(7)k∈(0.17027,0.196385), (8)k=0.196385, (9)k∈(0.196385,0.212697),

(10)k=0.212697, (11)k∈(0.212697,0.230318), (12)k=0.230318,

(13)k∈(0.230318,0.242755), (14)k=0.242755, (15)k∈(0.242755,0.269742),

(16)k=0.269742, (17)k∈(0.269742,0.282514), (18)k=0.282514,

(19)k∈(0.282514,0.288958), (20)k=0.288958, (21)k∈(0.288958,0.29392),

(22)k=0.29392, (23)k∈(0.29392,0.304662), (24)k=0.304662,

(25)k∈(0.304662,0.314672), (26)k=0.314672, (27)k∈(0.314672,0.325411),

(28)k=0.325411, (29)k∈(0.325411,0.409808), (30)k=0.409808,

(31)k∈(0.409808,0.484832), (32)k=0.484832, (33)k∈(0.484832,+∞).

Proof We separately use the symbolsh00,ha0,hb0,hc0,h0l,h0m,h0n,hal,ham,han,hbl,hbm,hbn,hcl,hcmandhcmto expressH(0,0),H(±a,0),H(±b,0),H(±c,0),H(0,l),H(0,m),H(0,n),H(±a,l),H(±a,m),H(±a,n),H(±b,l),H(±b,m),H(±b,n),H(±c,l),H(±c,m), andH(±c,n).

Obviouslyhxy=hx0+h0y,h0l0.05,ha0

(1) The Hamiltonians of the singular points satisfy one of the following relations as 0

hcl

hcl

hcl

hcl

and the phase portrait is shown as Fig.1(1).

(2)Ask=0.05, we haveha0=hc0, and the Hamiltonians of the singular points satisfy the relations

hcl=hal

so the phase portrait is shown as Fig.1(2).

(3) The Hamiltonians of the singular points satisfy one of the following relations as 0.05

hal

hal

hal

hal

hal

hal

and the phase portrait is shown as Fig.1(3).

(4)Whenk=0.114716, we getham=h0n, and the Hamiltonians of the singular points satisfy the relations

hal

so the phase portrait is shown as Fig.1(4).

(5) The Hamiltonians of the singular points satisfy one of the following relations as 0.114716

hal

hal

hal

and the phase portrait is shown as Fig.1(5).

(29) The Hamiltonians of the singular points satisfy one of the following relations when 0.325411

hal

hal

hal

hal

so the phase portrait of the system (1) is shown as Fig.1(29).

(30) Whenk=0.409808, the Hamiltonians of the singular points satisfy the relations

hal

and the phase portrait of the system (1) is shown as Fig.1(30).

(31) The Hamiltonians of the singular points satisfy one of the following relationswhen 0.409808

hal

hal

so the phase portrait of the system (1) is shown as Fig.1(31).

(32) Ask=0.484832, the Hamiltonians of the singular points satisfy the relations

hal

so the phase portrait of the system (1) is shown as Fig.1(32).

(33) Ask>0.484832, the Hamiltonians of the singular points satisfy one of the following relations

hal

hal

so the phase portrait of the system (1) is shown as Fig.1(33).

Fig.1(1)~(33) The phase portraits of system (1)

主站蜘蛛池模板: 亚洲无限乱码一二三四区| 精品少妇人妻av无码久久| 99re在线免费视频| 一区二区三区成人| 国产精品欧美在线观看| 99re经典视频在线| 国产三级韩国三级理| 无码AV日韩一二三区| 色一情一乱一伦一区二区三区小说| 亚洲色图另类| 综合久久五月天| 亚洲视频色图| 国产色伊人| 欧美色视频网站| AV在线天堂进入| 午夜a级毛片| 日本国产精品一区久久久| 国产自在线播放| 中文字幕在线日韩91| 婷婷99视频精品全部在线观看| 99视频在线观看免费| 久久久久亚洲AV成人人电影软件 | 国产迷奸在线看| 欧美成人精品在线| 免费毛片全部不收费的| 国产美女在线观看| 免费毛片全部不收费的| 国产激情国语对白普通话| 成人国产免费| 亚洲精品无码专区在线观看| 国产超碰一区二区三区| 无码福利日韩神码福利片| 91福利免费视频| 国产精品13页| 亚洲男人的天堂久久香蕉网| 精品一区二区三区中文字幕| 999国内精品视频免费| 午夜国产精品视频| 国产精品第三页在线看| 国产小视频在线高清播放| 国产永久无码观看在线| 国产成人艳妇AA视频在线| 国产无人区一区二区三区| 久久久久久尹人网香蕉 | 国产精品成人免费视频99| 国产69囗曝护士吞精在线视频| 成年女人a毛片免费视频| 亚洲天堂久久新| 另类欧美日韩| 中文字幕第4页| 茄子视频毛片免费观看| 思思热在线视频精品| 亚洲经典在线中文字幕| 亚洲精品在线观看91| 人妻中文久热无码丝袜| 中文国产成人精品久久一| 香蕉eeww99国产在线观看| 亚洲无线一二三四区男男| 人妻无码中文字幕一区二区三区| 精品在线免费播放| 国产色婷婷| 中文字幕va| 日韩小视频在线播放| 毛片基地视频| 亚洲精品动漫在线观看| 亚洲综合婷婷激情| 国产在线观看一区精品| 久久久国产精品无码专区| 九九热视频在线免费观看| 国产免费精彩视频| 欧美激情首页| 在线免费不卡视频| 51国产偷自视频区视频手机观看| 国产91av在线| 午夜国产精品视频黄| 国产成人你懂的在线观看| 国产午夜福利在线小视频| 久久久久久久97| 久久6免费视频| 国产麻豆精品手机在线观看| 亚洲精品中文字幕无乱码| 国产成人精品免费视频大全五级 |