999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMMUTATORS GENERATED BY LUSIN-AREA INTEGRAL AND LOCAL CAMPANATO FUNCTIONS ON GENERALIZED LOCAL MORREY SPACES

2018-05-21 09:12:26MOHuixiaMARuiqingWANGXiaojuan
數學雜志 2018年3期

MO Hui-xia,MA Rui-qing,WANG Xiao-juan

(School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China)

1 Introduction

Suppose that Sn?1is the unit sphere in Rn(n ≥ 2)equipped with the normalized Lebesgue measure dσ.Let ? ∈ Ls(Sn?1)(1<s≤∞)be homogeneous of degree zero and satisfy the cancellation condition

where

Moreover,letwhere bi∈ Lloc(Rn)for 1 ≤ i≤ m.Then the multilinear commutator generated byand μ?,Scan be de fined as follows:

It is well known that the Lusin-area integral plays an important role in harmonic analysis and PDE(for example,see[1–8]).Therefore,it is a very interesting problem to discuss the boundedness of the Lusin-area integral.In[2],Ding,Fan and Pan studied the weighted Lpboundedness of the area integralμ?,S.In[3],the authors investigated the boundeness ofμ?,Son the weighted Morrey spaces.The commutators generated by μ?,Sattracted much attention too.In[5]and[6],the authors discussed the weighted Lpboundedness and endpoint estimates for the higher order commutators generated by μ?,Sand BMO function,respectively.In[8],the authors showed that the commutator generated by μ?,Sand V MO is a compact operator in the Morrey space.

Moreover,the classical Morrey space Mp,λwere first introduced by Morrey in[9]to study the local behavior of solutions to second order elliptic partial differential equations.And,in[10],the authors introduced the local generalized Morrey spaceand they also studied the boundedness of the homogeneous singular integrals with rough kernel on these spaces.

Motivated by the works of[2,3,5,8,10,13],we are going to consider the boundedness ofμ?,Son the local generalized Morrey spaceas well as the boundedness of the commutators generated by μ?,Sand local Campanato functions.

2 Some De finitions and Lemmas

De finition 2.1[10]Let ?(x,r)be a positive measurable function on Rn× (0,∞)and 1≤p≤∞.For any fixed x0∈Rn,a function fis said to belong to the local Morrey space,if

And we denote

According to this de finition,we recover the local Morrey spaceunder the choice

where

De fine

Remark 2.1[10]Note that,the central BMO spaceandMoreover,imagining that the behavior ofmay be quite different from that of BMO(Rn),since there is no analogy of the John-Nirenberg inequality of BMO for the space

Lemma 2.1[10]Let 1then

And from this inequality,we have

In this section,we are going to use the following statement on the boundedness of the weighted Hardy operator

where w is a fixed function non-negative and measurable on(0,∞).

Lemma 2.2[11,12]Let v1,v2and w be positive almost everywhere and measurable functions on(0,∞).The inequality

holds for some C>0 and all non-negative and non-decreasing g on(0,∞)if and only if

Moreover,ifis the minimum value of C in(2.1),then=B.

Lemma 2.3[2]Suppose that 1< q,s≤ ∞ and ? ∈ Ls(Sn?1)satisfying(1.1).If q,s and weighted function w satisfy one of the following conditions

(i)max{s′,2}= η < q < ∞,and w ∈ Aq/η;

(ii)2 < q < s,and w1?(q/2)′∈ Aq′/s′;

Remark 2.2From Lemma 2.3,it’s obvious that when ? ∈ Ls(Sn?1)(1 < s ≤ ∞)satis fies condition(1.1),the operatorμ?,Sis bounded on Lq(Rn)space for 2≤ q< ∞.

3 Lusin-Area Integral on Generalized Local Morrey Spaces

holds for any ball B(x0,r).

ProofLet B=B(x0,r).We write f=f1+f2,where f1=fχ2Band f2=fχ(2B)c.Thus we have

Since μ?,Sis bounded on Lq(Rn)space(see Lemma 2.3),then it follows that

Our attention will be focused now on

Without loss of generality,we can assume that for any x∈B,(y,t)∈Γ(x)and z∈2j+1B2jB,we haveThus there existssuch that

Hence

When ? ∈ L∞(Sn?1),it follows from the Hlder’s inequality that

When ? ∈ Ls(Sn?1),1 < s < ∞,it is obvious that

Thus from H?lder’s inequality and(3.4),we have

So

Therefore combining(3.1)and(3.6),we have

Thus we complete the proof of Theorem 3.1.

Theorem 3.2Let ? ∈ Ls(Sn?1)(1 < s ≤ ∞)satisfy condition(1.1)and max{2,s′} <q< ∞.Then,if functions ?,ψ :Rn×(0,∞)→ (0,+∞)satisfy the inequality

where C does not depend on x and r,the operatorμ?,Sis bounded from

ProofTakingandthen from Theorem 3.1,we have

Thus from Lemma 2.2,it follows that

Therefore

Thus we complete the proof of Theorem 3.2.

4 Commutators Generated by Lusin-Area Integral on Generalized Local Morrey Spaces

holds for any ball B(x0,r),where λ = λ1+ λ2+ ···+ λm.

ProofWithout loss of generality,it is sufficient for us to show that the conclusion holds for m=2.

Let B=B(x0,r).And we write f=f1+f2,whereThus we have

Let us estimate I and II,respectively.It is obvious that

From Lemma 2.1,it is easy to see that

Moreover,from Lemma 2.1,it is easy to see that

Similarly,

Therefore combining the estimates of I1,I2,I3and I4,we have

Let us estimate II.

SinceThen using H?lder’s inequality and(3.6),we have

In the following,let us estimate II2.For x ∈ B,when ? ∈ L∞(Sn?1),from Lemma 2.1 and estimate of(3.3),we have

For x∈B,when ? ∈ Ls(Sn?1),1< s< ∞,from Lemma 2.1 and the estimate of(3.5),it follows that

Let 1<<∞such thatthenand max{2,s′}<< ∞.Thus,from H?lder’s inequality,(4.4)and(4.5),we obtain

Similarly,

Let us estimate II4.It is analogue to the estimates of(4.4),(4.5)and(4.6),we have the following estimates.

When x∈ B,? ∈ L∞(Sn?1),we have

When x∈B,?∈Ls(Sn?1),1<s<∞,we have

Therefore from(4.7)and(4.8),we have

So from the estimates of II1,II2,II3and II4,it follows that

Therefore from the estimates of I and II,we deduced that

Thus the proof of Theorem 4.1 is completed.

ProofTakingand.It is easy to see that

Thus by Lemma 2.2,we have

So

Thus the proof of Theorem 4.2 is finished.

References

[1]Chang S Y A,Wilson J M,Wolff T H.Some weighted norm inequalities concerning the Schr?dinger operators[J].Comment.Math.Helv.,1985,60(1):217–246.

[2]Ding Y,Fan D S,Pan Y B.Weighted boundedness for a class of rough Marcinkiewicz integrals[J].India Univ.Math.J.,1999,48(3):1037–1055.

[3]Tao S P,Wei X M.Boundeness of Littlewood-Paley operators with rough kernels on the weighted Morrey spaces[J].J.Lanzhou Univ.,2013,49(3):400–404.

[4]Lin Y,Liu Z G,Mao D L,Sun Z K.Parameterized Littlewood-Paley operators and area integrals on weak Hardy spaces[J].Acta.Math.Sin.,2013,29(10):1857–1870.

[5]Ding Y,Lu S Z,Yabuta K.On commutators of Marcinkiewicz integrals with rough kernel[J].J.Math.Anal.Appl.,2002,275(1):60–68.

[6]Ding Y,Xue Q Y.Endpoint estimates for commutators of a class of Littlewood-Paley operators[J].Hokkaido.Math.J.,2007,36(2):245–282.

[7]Chen Y P,Ding Y,Wang X X.Commutators of Littlewood-Paley operators on the generalized Morrey space[J].J.Inequal.Appl.,2010(1),Artical ID:961502,20 pages.

[8]Chen Y P,Wang H.Compactness for the commutator of the parameterized area integral in the Morrey space[J].Math.Inequal.Appl.,2015,18(4):1261–1273.

[9]Morrey C B.On the solutions of quasi-linear elliptic partial differential equations[J].Trans.Amer.Math.Soc.,1938,43(1):126–166.

[10]Balakishiyev A S,Guliyev V S,Gurbuz F,Serbetci A.Sublinear operators with rough kernel generated by Calder′on-Zygmund operators and their commutators on generalized local Morrey spaces[J].J.Inequ.Appl.,2015,2015(1):1–18.

[11]Guliyev V S.Local generalized Morrey spaces and singular integrals with rough kernel[J].Azerb.J.Math.,2013,3(2):79–94.

[12]Guliyev V S.Generalized local Morrey spaces and fractional integral operators with rough kernel[J].J.Math.Sci.,2013,193(2):211–227.

[13]Zhang L,Zheng Q.Boundedness of commutators for singular integral operators with oscillating kernels on weighted Morrey spaces[J].J.Math.,2014,34(4):684–690.

主站蜘蛛池模板: 中文字幕亚洲无线码一区女同| 国产成年无码AⅤ片在线 | 国产69精品久久久久妇女| 欧美亚洲一区二区三区导航| www精品久久| 99草精品视频| 爽爽影院十八禁在线观看| 中文字幕乱码二三区免费| 亚洲最大综合网| 国产亚洲视频播放9000| 国产精品久久久久鬼色| 国产成人精品18| 日本精品αv中文字幕| 国产91小视频在线观看| 午夜老司机永久免费看片| 久久成人18免费| 亚洲大学生视频在线播放| 国产亚洲精品精品精品| 亚洲va欧美va国产综合下载| 青青青国产在线播放| 国产福利一区二区在线观看| 天天综合色天天综合网| 欧美中文字幕在线播放| 精品人妻AV区| 国产高清无码麻豆精品| 亚洲aⅴ天堂| 久久综合AV免费观看| 在线免费亚洲无码视频| 亚洲欧洲日产国产无码AV| 日本一区二区三区精品AⅤ| 91青青视频| 国内精品视频区在线2021| 亚洲一区二区约美女探花| 亚洲中文字幕国产av| 亚洲资源在线视频| 国产主播福利在线观看| h网站在线播放| 国产第一页免费浮力影院| 久久久久久高潮白浆| 中文字幕在线欧美| 激情六月丁香婷婷四房播| 免费啪啪网址| 91娇喘视频| 亚洲人成在线精品| 婷婷午夜天| 日韩在线2020专区| 九色在线视频导航91| 欧美日韩v| 久久免费视频6| 亚洲va在线观看| 美美女高清毛片视频免费观看| a级高清毛片| 亚洲欧洲国产成人综合不卡 | 欧洲欧美人成免费全部视频| 在线观看av永久| 亚洲欧美日韩动漫| 久青草网站| 欧美日韩国产在线观看一区二区三区| 国产精品视频白浆免费视频| 18禁不卡免费网站| 2048国产精品原创综合在线| 久久五月天综合| 亚洲第一视频免费在线| 亚洲国产理论片在线播放| 亚洲精品中文字幕无乱码| 久久国产精品国产自线拍| 欧美日韩亚洲综合在线观看| 亚洲一区二区日韩欧美gif| 青青草综合网| 色婷婷天天综合在线| 精品伊人久久大香线蕉网站| 免费a级毛片18以上观看精品| 精品91视频| 国产福利不卡视频| 99热这里只有精品免费| 国产精品久久久久久久久久久久| 欧美啪啪视频免码| 亚洲男人的天堂久久精品| 88av在线| 亚洲狼网站狼狼鲁亚洲下载| 中文字幕日韩视频欧美一区| 欧美日韩一区二区在线免费观看|