曹光昭

摘要:隨著全球環(huán)境問題的日益突出,風能作為清潔能量的來源越來越顯示著其不可替代的地位。根據(jù)風電場的現(xiàn)場條件對風機類型進行合理的選擇,使得機組運行性能最優(yōu)、風電場獲得最高的投資回報率、使風電場得到及時的維護并長期良好運行,己成為該領域研究的重點課題。本文以選擇風電場要求下的合適的風力發(fā)電機型號為目標,考慮風電機組選型的經(jīng)濟性能,構建風電場風機選型的多目標熵決策模型。建立風電機組選型的指標體系,進行指標的標準化及歸一化處理以消除不同量綱對結果的影響。通過計算指標熵值及熵權來確定指標的重要性程度,確定方案綜合得分,進行方案優(yōu)選。
Abstract: With the increasingly prominent global environmental issues, wind energy, as a source of clean energy, has increasingly shown its irreplaceable status. According to the on-site condition of the wind farm, reasonable selection of the wind turbine type makes the operation performance of the wind turbine optimal and the highest return on investment of the wind farm, which enables the wind farms to be timely maintained and operated well for a long time, which has become a key issue in this field. In this paper, aiming at the selection of the suitable wind turbine model under the requirement of wind farm, the multi-objective entropy decision-making model of wind turbine selection is constructed considering the economic performance of wind turbine selection. To eliminate different dimensions of the wind turbine selection index system, the standardization and normalization of indicators will be conducted. By calculating the index entropy and entropy to determine the degree of importance of indicators, the overall program score for program optimization can be determined.
關鍵詞:風電場;機組選型;多目標熵決策
Key words: wind farm;power generation income;multi-objective entropy decision
中圖分類號:TM315 文獻標識碼:A 文章編號:1006-4311(2018)11-0167-03
0 引言
近幾年來,我國在兆瓦級發(fā)電機組的研發(fā)上不斷取得了好成績。其中,已經(jīng)成功投入運營的是金風科技開發(fā)的2.5MW和3MW機組,已經(jīng)能并網(wǎng)發(fā)電的則是華銳風電開發(fā)的3MW海上風力發(fā)電機組,而華銳風電、湘電風能、東方電氣和重慶海裝則開始了對單機容量為SMW的風力發(fā)電機組研發(fā)[1,2]。
然而,在風電場的建設過程中,風力發(fā)電機組選型工作是非常重要的,但是現(xiàn)存的風電機組選型方法又存在很大的問題。因此,本課題就以機組選型方法探討作為目的,著手于找出一種既具有扎實的理論基礎、較強的操作性又能運用于工程實踐的完整性方法,并將這種方法運用到實際的案例中,驗證其正確性與可操作性,以期為風電場投資建設前的風機選型工作做出一定的參考。
1 風電機組選型指標體系構建
依據(jù)風電機組選型的實際情況及考慮因素,通過分析風電機組的各個指標,建立一個相對完善的風電機組選型指標,包括風電機組的技術性能指標及經(jīng)濟性能指標。
1.1 技術性能指標
風機選型相關技術性能指標主要包括風電機組的風況特性分析指標、風機主要部件參數(shù)以及風機整體特性[3,4,5]。其中,風況特性分析指標包括年平均風速、額定風速、風功率密度、平均風功率密度、風速頻率、50年一遇最大風速和極大風速以及機組安全等級;風機主要部件參數(shù)指標包括葉輪、齒輪箱、發(fā)電系統(tǒng)以及塔架;整體特性參數(shù)包括風電機組可利用率、功率調(diào)節(jié)方式以及功率曲線保證率。
1.2 經(jīng)濟性能指標
風電機組的經(jīng)濟性能指標主要包括風電場發(fā)電收入以及風電場建設工程投資。風電項目的工程總投資包括施工輔助工程費用、設備及安裝工程、建筑工程費用、基本預備費、價差預備費以及建設期利息。在電力行業(yè)中,衡量工程投資效果的重要指標除了上文所述的靜態(tài)總投資和工程總投資,還包括單位千瓦靜態(tài)投資及單位電度靜態(tài)投資。
1.3 風電機組選性指標體系
基于上文已經(jīng)分析的風力發(fā)電機組選型的技術性能指標、風電收入指標以及工程投資,可以建立風電機組選型決策的指標體系,所建立的具體指標體系如表1所示。
2 風電機組選型的灰色熵權決策過程
對于不同的指標而言,衡量其重要性程度的因素可能是不同的。本文建立風電機組選型過程中的區(qū)間灰數(shù)序列的灰色熵權模型,能綜合衡量決策者進行決策時對不同指標所掌握的信息的多少從而進一步判斷決策方案的優(yōu)劣[6,7]。
利用熵權法進行決策指標的賦權,實際并不是評估決策指標的重要性程度,更多意義上是確定決策指標在幫助決策者進行決策時所具有的競爭激烈程度[8]。從信息論的角度說,就應該是決策者在進行決策時,對該決策指標所掌握的決策信息的多少。
2.1 區(qū)間灰數(shù)標準化
建立方案集A對決策指標的區(qū)間灰色決策矩陣如下:
根據(jù)標準區(qū)間灰數(shù)的定義進行區(qū)間標準化:
式(2)即為區(qū)間灰數(shù)的標準化形式,其中,gij表示區(qū)間灰數(shù)?茚ij的白部,cij代表區(qū)間灰數(shù)?茚ij的灰部。
2.2 計算指標灰熵值及熵權
信息熵H(x)的計算公式為:
指標熵權的計算公式為:
式(4)中,Wj表示第j個指標的熵權,m表示評價指標的個數(shù)。
根據(jù)熵值的計算公式以及上文提及的灰色區(qū)間的定義,將兩者結合,可以計算指標的灰色熵值[9,10]。記i為第i個指標灰熵,根據(jù)信息熵Hi的計算公式可知,i的計算公式如下所示:
計算i的最大值和最小值,可知:
指標灰色區(qū)間權重計算公式如下:
根據(jù)區(qū)間數(shù)的運算法則進一步計算指標的灰色區(qū)間權重為:
至此,已經(jīng)可以確定指標的重要性程度的所屬區(qū)間。然而,由于文中確定的是一個區(qū)間,因此,需要對熵權進行規(guī)范化處理。因此,給出熵權規(guī)范化的計算公式:
2.3 確定方案綜合得分
2.4 方案排序
要利用上文已經(jīng)求出的方案綜合得分的灰色區(qū)間對方案進行優(yōu)選,就需要計算指標的可能度,利用可能度矩陣進行方案之間的兩兩比較,并對所有的方案進行優(yōu)劣排序,才能最終確定所選方案是否正確。
其中,可能度矩陣中的元素計算公式為:
可能度矩陣能包括所有方案相互比較的全部可能度信息,因此可以通過求解能度矩陣的排序向量來對方案的優(yōu)劣進行排序。排序向量V=(v1,v2,…,vn)的計算公式為:
基于上文提出的可能度矩陣的排序向量,就能對方案進行合理的優(yōu)選。
3 某風電場機組選型的案例分析
采用專家打分法,對四種機型GW115-2000、UP115-2000、XE116-2000及WT110-2000的風況特性參數(shù)指標、風電場發(fā)電收入指標以及風電場建設投資指標進行綜合評價,進行機組選型的灰色熵權決策,計算出來的四種比選機型最終得分為:
Zi=17.42 150.1213.57 128.5714.51 152.3513.84 136.64
建立綜合屬性值的可能度矩陣:
P=0.5013 0.5513 0.5000 0.53340.4511 0.5000 0.4487 0.48250.5000 0.5489 0.4987 0.53140.4686 0.5175 0.4666 0.5000
鑒于計算結果,可以對方案進行優(yōu)劣的排序,排序結果為v1>v3>v4>v2。因此方案一最優(yōu),方案三次之。因此,本工程確定方案一為推薦方案。
4 結論
本文將多目標熵決策方法運用到風電機組選型過程中,綜合分析風電場建設及運營過程中的技術及經(jīng)濟指標,從而構建能夠完整準確進行風電機組選型評估的指標體系,在已有指標體系的基礎上,建立風電機組選型的多目標灰熵評價模型,采用可能度矩陣計算排序向量進行方案優(yōu)劣排序,就可以根據(jù)排序進行風電機組的選型決策。
然而隨著科技的發(fā)展,風電機組也會越來越適應于環(huán)境的變化,某些現(xiàn)行擬定的指標可能會隨著風電機組的變化而變化,因此,風電機組選型評價指標體系還需要在實踐中不斷發(fā)展與完善。
參考文獻:
[1]祁和生.我國風力發(fā)電機組總裝企業(yè)現(xiàn)狀[J].中國科技投資,2008(01):61-64.
[2]李俊峰,施鵬飛,高虎.中國風電發(fā)展報告.2010[M].海南出版社,2010.
[3]呂鵬遠,鄧志勇.風電場建設中的風力發(fā)電機組選型[J].水利水電技術,2009,40(09):57-59.
[4]田迅,任臘春.風電機組選型分析[J].電網(wǎng)與清潔能源,2008,24(10):36-39.
[5]胡立偉.風電設備選型的技術經(jīng)濟分析[J].農(nóng)業(yè)工程技術(新能源產(chǎn)業(yè)),2007(05):61-64.
[6]周慧勤,馬進,符金偉.基于AHP模糊綜合評判法的風力發(fā)電機選型研究[J].華東電力,2012(09):1494-1498.
[7]張承平.灰色逼近理想解排序法在多目標決策中的應用[D].成都理工大學,2005.
[8]郭金維,蒲緒強,高祥,等.一種改進的多目標決策指標權重計算方法[J].西安電子科技大學學報,2014(06):118-125.
[9]屈莉莉,陳燕,侯振龍.基于模糊層次熵多目標評價決策模型的物流服務商優(yōu)選[J].大連海事大學學報,2005,31(03):31-35.
[10]張華,何波,劉耕.基于模糊熵和多目標規(guī)劃的公路貨運交通樞紐布局模型[J].物流技術,2007,26(07):46-47.