999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Determinants of Generalized GCD Matrices Associated with Arithmetic Functions

2018-03-23 08:07:28ZHUYuqingLIANDongyanDIAOTianboHUShuangnian

ZHU Yuqing, LIAN Dongyan, DIAO Tianbo, HU Shuangnian,2

( 1. College of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan;2. College of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan)

1 Introduction and statements of main results

Throughout this section, we letfbe an arithmetic function andS={x1,x2,…,xn} be a set ofndistinct positive integers. We can now give the first two main results of this paper, which extend Bege’s results[20].

Then each of the following is true:

and then×nmatrixD=(dij) is defined by

In what follows, we always let then×nmatricesCandDbe defined as in Theorem 1.1.From Theorem 1.1, one can deduce the following result of Bege[20].

Then each of the following is true:

FromTheorem1.2,onecandeducethefollowingresultofBege[20].

From Theorems 1.1 and 1.2, we can easily get the following result.

We organize this paper as follows. In Section 2, we prove Theorems 1.1 and 1.2. In Section 3, some examples are given to illustrate our main results.

2 Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1-1.2. We begin with the proof of Theorem 1.1.

ProofofTheorem1.1(i) Write

A=Cdiag(f(x1),f(x2),…,f(xn))DT.

Then for any integersiandj(1≤i,j≤n), we have

Thus,

So the desired result follows immediately. This completes the proof of part (i).

det(C)det(diag(f(x1),f(x2),…,f(xn)))×

(iii) As the argument given in part (ii), we let 1≤x1

This ends the proof of Theorem 1.1.

ProofofTheorem1.2(i) For any integersiandjwith 1≤i,j≤n, we have

So the desired result follows immediately. This completes the proof of part (i).

(ii) Using part (i), one infers that

det(D)det(diag(f(x1),f(x2),…,f(xn)))×

Since Corollaries 1.1~1.3 are very easy to get, we omit their proofs here.

3 Examples

In this section, we give some examples to demonstrate our main results.

Example3.1LetS={2,4,8,12,16} andλbe the Liouville function which is defined by

Then one has

By Theorems 1.1 and 1.2, we have

and

Furthermore, we have

Example3.2LetS={2,4,5,8}. For any positive integern, we letf(n)=n. Then we obtain

From Theorems 1.1 and 1.2, we have

and

Moreover, we have

and

AcknowledgementsThe authors would like to thank the anonymous referee for careful reading of the manuscript and helpful comments that improve the presentation of this paper.

[1] SMITH H J S. On the value of a certain arithmetical determinant[J]. Proc London Math Soc,1875,7(1):208-212.

[2] BESLIN S, LIGH S. Another generalization of Smith’s determinant[J]. Bull Aust Math Soc,1989,40(3):413-415.

[3] BOURQUE K, LIGH S. Matrices associated with classes of arithmetical functions[J]. J Number Theory,1993,45(3):367-376.

[4] BOURQUE K, LIGH S. Matrices associated with arithmetical functions[J]. Linear Multilinear Algebra,1993,34(3/4):261-267.

[5] BOURQUE K, LIGH S. Matrices associated with multiplicative functions[J]. Linear Algebra Appl,1995,216(2):267-275.

[6] CODECA P, NAIR M. Calculating a determinant associated with multiplicative functions[J]. Boll Unione Mat Ital Sez B:Artic Ric Mat,2002,5(2):545-555.

[7] HILBERDINK T. Determinants of multiplicative Toeplitz matrices[J]. Acta Arith,2006,125(3):265-284.

[8] HONG S. Gcd-closed sets and determinants of matrices associated with arithmetical functions[J]. Acta Arith,2002,101(4):321-332.

[9] HONG S. Factorization of matrices associated with classes of arithmetical functions[J]. J Algebra,2003,281(1):1-14.

[10] HONG S. Nonsingularity of matrices associated with classes of arithmetical functions[J]. Linear Algebra & Its Applications,2006,416(1):124-134.

[11] HONG S, LI M, WANG B. Hyperdeterminants associated with multiple even functions[J]. Ramanujan J,2014,34(2):265-281.

[12] HONG S, LOEWY R. Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (modr)[J]. Int J Number Theory,2011,7:1681-1704.

[13] 胡雙年,陳龍,譚千蓉. 定義在兩個擬互素因子鏈上與算術函數相關聯矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(1):6-10.

[14] HU S, HONG S. Multiple divisor chains and determinants of matrices associated with completely even functions (modr)[J]. Linear Multilinear Algebra,2014,62(9):1240-1257.

[15] HU S, HONG S, ZHAO J. Determinants of matrices associated with arithmetic functions on finitely many quasi-coprime divisor chains[J]. Appl Math Comput,2015,258(1):502-508.

[16] 胡雙年,譚千蓉,趙相瑜.k-集合上與算術函數關聯矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(3):456-460.

[17] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra Appl,2013,438(3):1454-1466.

[18] 趙建容. 使得冪GCD陣(Se)整除冪LCM矩陣[Se]的四元gcd封閉集S的一個刻畫[J]. 四川大學學報(自然科學版),2008,45(3):485-487.

[19] 趙建容,趙偉,李懋. 六元gcd 封閉集上Smith 矩陣的整除性[J]. 數學學報,2011,54(4):609-618.

[20] BEGE A. Generalized GCD matrices[J]. Acta Univ Sapientiae Math,2010,2(2):160-167.

[21] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra,2013,438(3):1454-1466.

[22] WAN J, HU S, TAN Q. New results on nonsingular power LCM matrices[J]. Electronic Journal of Linear Algebra,2014,27(1):652-669.

[23] HONG S, HU S, LIN Z. On a certain arithmetical determinant[J]. Acta Math Hungar,2016,150(2):372-382.

[24] HONG S, HU S, HONG S. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions[J]. Open Math,2016,14(1):146-155.

[25] HU S, LIAN D, DIAO T, et al. Further results on generalized LCM matrices[J]. 武漢大學學報(自然科學英文版),2017,22(1):1-4.

主站蜘蛛池模板: 无码在线激情片| 黄色网页在线观看| a在线亚洲男人的天堂试看| 99re免费视频| 五月天香蕉视频国产亚| 亚洲成A人V欧美综合| 成人中文字幕在线| 成人在线视频一区| 欧美日一级片| 亚洲欧美日韩中文字幕一区二区三区| 亚洲IV视频免费在线光看| 精品无码一区二区三区电影| 91久久国产成人免费观看| 亚洲成A人V欧美综合天堂| 久久99国产综合精品女同| 动漫精品中文字幕无码| 超薄丝袜足j国产在线视频| 国产精品自在线天天看片| AV在线天堂进入| 久青草免费在线视频| 在线视频精品一区| 国产一级做美女做受视频| 99re免费视频| 国产丰满成熟女性性满足视频| 欧美日韩亚洲综合在线观看| 亚洲第一区精品日韩在线播放| 内射人妻无套中出无码| 国内精自视频品线一二区| 精品人妻无码中字系列| 亚洲第一成年网| 伊在人亞洲香蕉精品區| 国产91特黄特色A级毛片| 亚洲国产综合精品一区| 98精品全国免费观看视频| 亚洲天堂在线免费| 99热这里只有精品国产99| 日本成人在线不卡视频| 日韩第九页| 国产永久无码观看在线| 亚洲精品男人天堂| 一本一道波多野结衣一区二区| 精品三级网站| 亚洲无码视频一区二区三区 | aaa国产一级毛片| 99这里只有精品免费视频| 区国产精品搜索视频| 日韩高清一区 | 久草性视频| 中文字幕乱妇无码AV在线| 美女被躁出白浆视频播放| 99久久无色码中文字幕| 91精品免费久久久| 欧美日本视频在线观看| 91口爆吞精国产对白第三集| 欧美精品1区| 国产高清在线观看91精品| 欧美国产日韩另类| 一区二区理伦视频| 国产成人91精品| 蜜桃视频一区| 伊人久久精品亚洲午夜| 亚洲天堂久久新| 国产精品久久精品| 色婷婷视频在线| 亚洲日韩Av中文字幕无码| 操美女免费网站| 欧美日韩午夜视频在线观看| 91福利免费视频| 国产亚洲精品自在久久不卡| 久久久成年黄色视频| av在线手机播放| 欧美成人影院亚洲综合图| 午夜性爽视频男人的天堂| 中国成人在线视频| 四虎综合网| 免费毛片a| 亚洲性日韩精品一区二区| 日韩在线视频网站| 国产免费羞羞视频| 青青青国产在线播放| 这里只有精品在线播放| 国产人人射|