成玉婷,李 鵬,徐國策,李占斌,2,王 添
?
凍融條件下土壤可蝕性對坡面氮磷流失的影響
成玉婷1,李 鵬1,徐國策1※,李占斌1,2,王 添1
(1. 西安理工大學西北旱區生態水利工程國家重點實驗室培育基地,西安 710048; 2.中國科學院水利部水土保持研究所黃土高原土壤侵蝕與旱地農業國家重點實驗室,楊凌 712100)
凍融作用與水力侵蝕的復合作用更容易使土壤發生侵蝕,進而加劇土壤養分的流失,為了揭示凍融作用下土壤可蝕性對坡面養分流失的影響,該文采用室內模擬降雨試驗,研究了不同土壤含水率(SWC)下坡面的降雨產流產沙及養分流失特征,并分析了土壤可蝕性對坡面全氮(TN)和全磷(TP)流失的影響。結果表明:產流率與產沙率之間呈現正線性相關關系,相關方程斜率的絕對值可作為土壤可蝕性指標。徑流中氮磷的流失主要受徑流率控制,受土壤可蝕性影響較小(>0.05);而土壤可蝕性顯著影響著泥沙中氮磷和總的氮磷流失(<0.01)。土壤可蝕性對黃土坡面氮素流失的影響與凍融作用有關,而土壤可蝕性對坡面磷素流失的影響與凍融作用無關,磷素的流失隨著土壤可蝕性增加而增加。因此,在黃土地區,應當采取一系列的生態建設措施來控制水土流失,降低土壤可蝕性,從而減少坡面養分的流失。該研究結果為凍融條件下黃土坡面水-土和氮磷等養分流失機制提供了有效指導。
土壤含水率;侵蝕;氮;磷;凍融;土壤可蝕性
凍融作用是指土壤溫度受到氣溫影響而使其在凝固點上下變化導致的土壤凍結、融化的現象,是全球中高緯度和山地地區普遍存在的自然現象。已有研究表明,凍融作用能有效地改變土壤結構[1-2],而土壤結構又會顯著影響土壤的可蝕性。隨著土壤侵蝕研究的逐漸深入,發現凍融侵蝕對人類生存與發展的影響越來越顯著,凍融侵蝕的危害不容忽視,加上凍融作用與其他侵蝕外力的復合作用,其帶來的土壤侵蝕及養分流失問題遠遠超過了凍融侵蝕本身的危害[3]。凍融通過改變土壤團聚體組成及其含水率、轉變土壤的主要化合物形態、干擾土壤微生物群落演變等多種方式影響土壤元素的生物地球化學循環過程[4],從而對土壤生態系統結構和功能產生影響。同時,近年來,由于地球氣溫變暖的趨勢明顯,顯著地影響了凍融土壤中營養元素的生物地球化學循環過程[5-6]。研究發現土壤含水率與土壤溫度是影響和調控土壤有機物質礦化率季節變化的重要因子[7],同一制約因素在凍融作用驅動下對土壤養分的影響效果也各不相同,眾多相互關聯的因子產生的綜合效應導致凍融作用下土壤養分遷移轉化的行為各異[8-10]。
由于凍融侵蝕發生環境的惡劣、侵蝕過程的復雜以及監測試驗模擬的困難等原因,凍融侵蝕的研究相比水力侵蝕和風力侵蝕較為滯后[11]。目前關于非凍融坡面土壤養分流失的研究已取得了許多有益的成果[12-13],而凍融侵蝕的研究相對起步較晚,并且多集中于凍融作用對土壤物理性質的改變以及對侵蝕量的影響[14-15],對凍融坡面土壤養分流失的研究關注較少。鑒于此,本研究以黃土為研究對象,通過室內凍融模擬降雨試驗,觀測不同土壤前期含水率條件下坡面產流、產沙特征以及氮、磷的流失規律,并分析土壤可蝕性對氮、磷流失的影響,旨在量化凍融作用下坡面水沙養分的流失特征,為凍融侵蝕養分流失機理的研究提供重要參考。
黃土高原丘陵溝壑區處于溫帶大陸性季風氣候區,年氣溫0 ℃以下天數為105~125 d,約占全年1/3。該區多年平均降雨量為300~600 mm,汛期降雨量占全年的70%以上。在冬春季交替時,凍融侵蝕嚴重,因此,試驗選取了西安郊區的黃土作為試驗土壤,其機械組成為黏粒1.36%,粉粒59.99%和砂粒38.65%,根據美國農業部土壤質地分類標準,土壤質地為粉(砂)壤土,與黃土高原土壤質地一致。將供試土壤風干并過直徑為10 mm的篩孔,除去植物根系和塊石等雜物備用。供試土壤理化性質見表1。

表1 供試土壤理化性質
模擬降雨裝置采用西安理工大學水資源研究所研制的針管式降雨裝置[16],如圖1所示。降雨器由供水裝置、恒壓儲水箱、針管式雨滴發生器和流量控制等組成;儲水箱始終充滿水以保證水壓恒定;流量控制器用來控制流量,使水流穩定,保證水流均勻。

圖1 降雨裝置結構圖
由于本試驗研究的是凍融條件下坡面的水沙及養分流失機制,因此試驗采用0.9 m′0.45 m′0.15 m(長′寬′高)的木質土槽,在木槽底部收集徑流,如圖1。選取的土槽尺度較小,主要有2方面的原因。一方面是土槽越小越好控制,試驗精度較高,可操作性較好,可以更好地達到預期的效果;另一方面,基于現狀,因為凍融實驗設備達不到大尺度的要求,國內外學者目前研究凍融坡面模擬試驗大部分使用較小的尺度[3]。同時,目前基于非凍融坡面下模擬降雨試驗的設定,也有些試驗選擇的是小尺度的土槽[17-19]。
冷凍設備采用超低溫冰箱(1.15 m′0.72 m′0.85 m,長′寬′高),凍結溫度為?10~?40 ℃。
試驗于2015年9月上旬在西北旱區生態水利工程國家重點實驗室培育基地雨洪侵蝕大廳完成。分為凍融坡面(FTS)和黃土坡面(LS)2個處理,每個處理3次重復。降雨裝置置于木槽上方12 m處,土槽坡度統一為15°,由于黃土高原的降雨基本屬于短歷時的強降雨,為了更好地觀測降雨過程中土壤侵蝕現象,設置降雨強度為(1.0±0.05) mm/min,產流歷時60 min。根據黃土高原小流域全年實際監測土壤含水率范圍1.24%~27.61%[20],試驗設定5個土壤質量含水率,分別為10%,15%,20%,25%,30%。為了獲得不同前期土壤質量含水率的土料。首先,測定風干土壤初始含水率,根據初始含水率,計算配置成要求控制含水率所需要的水量;然后,將土壤均勻攤開,用噴壺將補充水量均勻噴到土壤表面,充分攪拌后用塑料薄膜覆蓋,靜置24h,使土壤含水率分布均勻。裝土前在土槽底部鋪一層紗布,再裝入2 cm厚的天然沙,以保證試驗用土的透水性與天然坡面接近,確保土壤水分均勻下滲,隨后填裝制備好的土料。為了控制試驗坡面物理狀況的一致性,采用每5 cm分層填裝,層間接觸面打毛,防止出現分層現象,保證土質均勻;土壤容重控制在1.25 g/cm3左右,逐層填裝至10 cm,并確保土層表面與收集徑流的槽在同一水平位置。裝填完畢,用塑料薄膜覆蓋土壤表面,以防模擬降雨前期表層土壤含水率因蒸散發而改變。
將填土后的土槽放入溫度為?20 ℃的冰箱冷凍24 h,然后將其放在室溫下解凍24 h,試驗過程中室溫約為12 ℃。為了更好地模擬野外實際情況,將土槽四周附上保溫材料,使土壤從頂部和底部開始融化。
開始降雨前先用水準儀對坡面進行校正,并率定降雨雨強和降雨分布均勻性,確保每場試驗的降雨均勻度在80%以上,降雨均勻度計算公式見文獻[21],當雨強及降雨均勻度滿足試驗要求后,開始降雨。當坡面出水口開始產流后,每隔5 min用塑料桶收集一次出水口處的全部渾水樣品,靜置24 h后,分離徑流樣品,將其在4 ℃的溫度下保存,以進行徑流樣品中氮磷測試分析。其余樣品過濾,風干后稱質量,計算產沙量和產流量,并將風干的泥沙樣品保存,以進行泥沙樣品中氮磷的測試分析。
本研究中的土壤可蝕性計算數據通過室內模擬降雨試驗獲得。土壤可蝕性因子代表了降雨過程中某一種特定土壤的平均值,可以用來評估不同含水率條件下2種坡面土壤侵蝕的相對大小。USLE中土壤可蝕性因子的計算公式如下[22]:

式中為土壤流失量,kg/m2;為降雨侵蝕力因子,MJ·mm/m2·h;為坡長-坡度因子;管理因子C和P在USLE設置為默認值1。
土壤可蝕性與土壤理化性質密切相關,凍融前后黃土之間的差異使2種坡面土壤侵蝕特征(徑流、泥沙和養分)明顯不同。依據公式(1)及試驗結果計算了土壤可蝕性因子,結果見表2。可以看出,低含水率條件下(10%和15%),FTS土壤可蝕性因子大于LS,平均比值為1.4,這是由于在低含水率條件下,黃土內部疏松多孔,比熱較小,土溫變化大。土壤凍結后,土壤孔隙中冰晶的膨脹,這種膨脹打破了顆粒與顆粒之間的聯結,溫度回升后,膨脹的土壤開始融化,使內部形成較大孔隙,改變了土壤結構層次、松緊層次等正常的土壤結構格局[23]。因此凍融作用后,土壤團聚體結構被破壞,土壤崩解率提高,抗沖抗蝕性明顯降低。在高含水率區(20%、25%和30%),值表現為:LS>FTS,同時,LS和FTS的值均呈先降低后增加趨勢,說明2種坡面下土壤含水率過低或者過高都會造成大量的土壤流失。

表2 土壤可蝕性K值變化
注:為土壤流失量,為降雨侵蝕力因子,為坡長-坡度因子。
Note:is average soil loss,is the rainfall erosivity factor, andis the slope length-gradient factor.
2.2.1 坡面產流產沙規律
不同含水率下坡面產流率和產沙率隨時間變化分布見圖2。可以看出,所有條件下產流率隨時間變化均表現為先增加后趨于穩定,呈對數函數變化。說明在試驗結束前,2種坡面均達到了穩定入滲率,且FTS比LS達到穩定入滲率所需的時間長15 min。從圖2可以看出,在高含水率區,2種坡面產流率均表現為隨著含水率的增加而增加;在低含水率區,LS坡面產流率隨著含水率的增加而增加,FTS坡面產流率隨著含水率的增加而降低,這是因為在負溫條件下,當含水率小于15%時,土壤的壓縮模量隨含水率增大而降低[24],壓縮模量越大,土越堅硬,入滲越小,產流越大。因此,在低含水率區,凍融后土壤含水率越大,其產流率越小。產沙率表現為,在高含水率區,2種坡面產沙率均隨著含水率的增加而增加;在低含水率區,2種坡面產沙率均隨著含水率的增加而減小,這與王輝等的研究結果一致[25]。

圖2 不同含水率條件下坡面產流率和產沙率隨時間變化
2.2.2 產流率與產沙率關系
對坡面產流率和產沙率進行回歸分析,選擇擬合度最高的回歸方程來描述產流和產沙之間的關系(見表3),結果表明,產沙率與產流率之間的關系符合線性回歸方程(2)。

式中q指產沙率(g/m2·min),q指產流率(mm/min),和分別指回歸系數。前人研究中也廣泛地使用類似的線性函數來描述產沙和產流之間的關系[26-27]。
通常用產流率和產沙率之間的關系來表征土壤侵蝕,將回歸系數的絕對值作為土壤可蝕性指標[28-29]。從表3可以看出,隨著含水率增加,2種坡面的絕對值均表現為先減小后增加的趨勢,結果與土壤可蝕性值的變化一致,進一步可以確認的絕對值可以用來表征土壤可蝕性。但是值不等同于值,土壤可蝕性因子只是反映了某一種特定土壤的平均侵蝕程度,而土壤侵蝕指標可以反映不同處理條件下坡面土壤可蝕性的輕微變化。

表3 不同含水率下坡面產流率與產沙率回歸分析
將作為土壤可蝕性指標分別與徑流、泥沙和總的氮磷流失率進行回歸分析,結果見圖3。可見,土壤侵蝕指標與泥沙中和總的氮磷流失率之間存在顯著的相關關系(2>0.7,<0.01),與徑流中氮磷流失率之間的相關性較差(>0.05)。指的是單位體積徑流中泥沙的流失量,因此較高的土壤流失率必然導致較高的值,而徑流中氮磷的流失主要受產流率控制,與產沙率關系很小。
LS坡面下,土壤侵蝕度指標與泥沙中和總的TN流失率之間的回歸關系滿足二次函數關系,公式如下

土壤侵蝕度指標與泥沙中TP和總TP流失率的回歸關系滿足對數函數,公式如下

FTS坡面下,土壤侵蝕度指標與泥沙中和總的TN和TP流失率之間的回歸關系均滿足線性函數,公式如下

式中為養分流失率(泥沙中養分或總養分流失率),為土壤侵蝕度指標,、和分別代表回歸參數。
由圖3可以看出,除了二次函數,其余函數中值總是大于0,說明LS坡面泥沙中和總的TN流失率均隨著土壤可蝕性的增加呈現先增加后減小趨勢;而其他條件下泥沙中和總的養分流失率均隨著土壤可蝕性的增加而逐漸增加。

注:總TN,總TP分別指徑流和泥沙中TN,TP之和,下同。
氮、磷等養分可以溶解在水體中通過徑流遷移,或者吸附在土壤顆粒上隨著侵蝕泥沙遷移[30],所以養分的總流失量主要包括徑流和泥沙中的養分流失量2部分。不同含水率下徑流中和泥沙中TN和TP的流失率隨時間變化見圖4和圖5,可以看出,2種坡面下,徑流中TN的流失規律表現為,含水率為10%和25%時,FTS>LS,其余含水率下,FTS 2種坡面不同含水率條件下氮磷的總流失量變化如圖6。可以看出,含水率為10%時凍融之后TN的總流失量增加了1.6倍,含水率為15%~30%時,凍融之后TN的總流失量減少了,此結果與前人存在差異[32],這主要是由于試驗土壤的性質和類型以及坡面的處理方式各不相同所致。同時,含水率為10%和15%時,凍融之后TP的總流失量分別增加了5倍和1.9倍,此結果與周旺明等[33]的研究結果一致。通常情況下,黃土地區實測土壤含水率均值在10%~15%之間[20],因此,在黃土地區凍融作用會加劇坡面氮磷等養分的流失。 圖4 不同前期含水率下坡面徑流中氮磷流失率隨時間變化 圖5 不同前期含水率下坡面泥沙中氮磷流失率隨時間變化 注:不同小寫字母、大寫字母分別表示黃土坡面、凍融坡面氮磷流失量差異顯著(P<0.05)。 2.4.1 產流率與坡面氮、磷流失的關系 產流對坡面氮磷流失的影響包括3個部分:徑流中、泥沙中和總的氮磷流失。通過回歸分析,發現產流率與徑流中和總的氮磷流失率之間的關系均滿足線性回歸方程(2),結果見表4。2種坡面下,產流率與泥沙中TN和TP流失率之間的關系在含水率為10%和15%時,擬合結果不理想,其余條件下均呈正線性關系。由于此線性程是在產流率為0.09~0.53 mm/min的情況下推導出來的,因此當產流率超出此范圍,方程是否適用,還需進一步驗證。同時,可以看出,所有條件下,徑流中TN和TP的流失率均隨著產流率的增加而增加,且產流率與TN流失率之間的回歸系數a絕大多數大于產流率與TP流失率之間的回歸系數a,說明徑流對TN流失的影響大于對TP流失的影響。 2.4.2 產沙率與坡面氮、磷流失的關系 產沙對坡面氮磷流失的影響包括2個方面:泥沙中和總的氮磷流失。產沙率與坡面TN和TP流失率關系見表5,可見,FTS坡面含水率為15%時,產沙率與泥沙中TN流失率之間不存在相關關系,其余條件下,產沙率與TN和TP流失率均滿足正線性函數關系。由于氮磷是土壤養分的基本組分,因此經過降雨徑流的侵蝕,氮磷流失量與產沙量直接成正比例關系[34],不同的植被類型和格局條件下,產沙率與養分流失之間也具有類似的函數關系[35]。隨著產沙率的增加,泥沙中砂粒含量增多,粘粒含量減少,而砂粒中氮磷含量較低,粘粒中氮磷含量較高[36];由此可推測泥沙中氮磷的流失率會隨著產沙率的不斷增加而減少。因此,當產沙率超出1.64~18.04 g/m2·min的范圍時,線性函數關系也將不再適用。 表4 產流率與坡面氮磷流失率回歸方程 表5 產沙率與坡面氮磷流失率關系 土壤凍融作用的本質是土體內水分體積的變化引起的土壤性質的變化,所以凍融作用對土壤養分流失的影響與含水率密切相關。同時,凍融通過改變土壤的功能結構和理化性質,進而改變土壤對磷素的吸附作用[37]。大量的凍融模擬試驗都驗證了凍融作用會對土壤氮的貯存造成不利的影響[38]。凍融作用通過冰晶的凍脹破壞了土壤團聚體、植物根系及微生物細胞,使其中的無機氮和有機氮釋放出來,增加了土壤無機氮的濃度[39]。凍融過程提高了土壤淋溶液中的總磷和磷酸根濃度,增加了磷元素的流失量[40]。此外,凍融破壞了有機物與鐵鋁化合物的膠合[41],鐵鋁化合物的釋放也會增加土壤表層顆粒對磷的吸附。含水率高的土壤在凍結時,由于冰晶對離子的排斥效應使磷素向土體下部遷移[42],如果沒有被深層土壤吸附則提高了磷流失的風險。而本試驗結果說明在高含水率區,凍融作用會促進磷素被深層土壤吸附,減少流失的風險。 徑流和泥沙的流失特征表明土壤可蝕性的高低決定了產流率和產沙率的高低,而坡面氮磷的流失與徑流和泥沙的流失量密切相關,因此土壤可蝕性間接地影響著坡面氮磷的流失。通過分析發現徑流中氮磷的流失主要受產流率影響,與土壤可蝕性相關性不顯著,但是泥沙中和總的氮磷流失又受到產沙率的顯著影響,與土壤可蝕性密切相關。因此進一步分析坡面土壤可蝕性指標與坡面氮磷流失的關系。發現常溫下,土壤可蝕性對黃土坡面TN和TP流失的影響存在一定閾值。當土壤可蝕性超過某一閾值時,黃土坡面TN的流失量會隨著土壤可蝕性增加而減少,TP流失量隨著土壤可蝕性的增加趨于穩定值。而凍融條件下,不存在這一閾值,坡面TN和TP流失均隨著土壤可蝕性的增加而不斷增加。因此,在黃土地區,我們應當采取修建梯田、淤地壩和陡坡地退耕還林、還草等有效的生態建設措施來控制水土流失,降低土壤可蝕性,從而達到減少坡面養分流失的效果。 土壤可蝕性對坡面氮磷等養分流失有一定的影響,同時水土以及養分流失過程也影響著土壤可蝕性的大小。有研究發現被侵蝕的泥沙比原始表土中含有較多的微小顆粒,土壤侵蝕過程中泥沙的這種分選搬運性最終會改變土壤質地并導致土壤可蝕性的改變[35],而氮素又是影響>0.25 mm水穩性團聚體和土壤流失的主要因素[43]。因此,關于土壤可蝕性與土壤特性和養分流失之間的動態交互關系,還有待深入研究。 通過模擬降雨試驗研究了凍融作用下,不同土壤前期含水率下土壤可蝕性對黃土坡面氮磷流失的影響規律,得出以下結論: 1)無論在高含水率區還是低含水率區,黃土坡面產流率均隨著含水率的增加而增加,但凍融之后,低含水率區產流率隨著含水率增加而減少。凍融作用對坡面產沙率無顯著影響。 2)黃土坡面凍融之后,含水率為10%時,TN的總流失量增加了1.6倍;含水率為10%和15%時,TP的總流失量分別增加了5倍和1.9倍。通常情況下,黃土地區土壤前期含水率不超過15%,因此,在黃土地區凍融作用會加劇坡面氮磷的流失風險。 3)凍融條件下,黃土坡面TN和TP的流失量均會隨著土壤可蝕性的增加而不斷增加。研究結果使我們更清楚的認識了凍融作用下水力侵蝕造成不同含水率坡面水-沙-養分的流失規律,同時也提供了土壤可蝕性與水-沙-養分流失的響應關系,建議采取生態建設措施來控制水土流失,降低土壤可蝕性,從而減少坡面養分的流失。但是,關于土壤可蝕性在凍融條件下與水-沙-養分流失之間的動態響應機制還需進一步深入研究。 [1] Pawluk S. Freeze-thaw effects on granular structure reorganization for soil materials of varying texture and moisture content[J]. Canadian Journal of Soil Science, 1988, 68(3): 485-494. [2] 王恩姮,趙雨森,夏祥友, 等. 凍融交替后不同尺度黑土結構變化特征[J]. 生態學報,2014,34(21):6287-6296. Wang Enheng, Zhao Yusen, Xia Xiangyou, et al. Effects of freeze-thaw cycles on black soil structure at different size scales[J]. Acta Ecologica Sinica, 2014, 34(21): 6287-6296. (in Chinese with English abstract). [3] 魏霞,李勛貴,Huang Chihua. 交替凍融對坡面產流產沙的影響[J]. 農業工程學報,2015,31(13):157-163. Wei Xia, Li Xungui, Huang Chihua. Impacts of freeze-thaw cycles on runoff and sediment yield of slope land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 157-163. (in Chinese with English abstract) [4] Sharma S, Szele Z, Schilling R, et al. Influence of Freeze-Thaw Stress on the Structure and Function of Microbial Communities and Denitrifying Populations in Soil[J]. Applied & Environmental Microbiology, 2006, 72(3): 2148-2154. [5] Sharma S, Szele Z, Schilling R, et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil[J]. Applied & Environmental Microbiology, 2006, 72(3): 2148-2154. [6] Xing W, Brüggemann N, Gasche R, et al. Environmental controls over soil-atmosphere exchange of N2O, NO, and CO2in a temperate Norway spruce forest[J]. Global Biogeochemical Cycles, 2010, 24(2). doi:10.1029/2009GB003616 [7] Patra A K, Jarvis S C, Hatch D J. Nitrogen mineralization in soil layers, soil particles and marco-organic matter under grassland[J]. Biology & Fertility of Soils, 1999, 29(1): 38-45. [8] Lehrsch G A, Sojka R E, Carter D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal, 1991, 55(5): 1401-1406. [9] Doney S C, Schimel D S. Carbon and climate system coupling on timescales from the precambrian to the anthropocene*[J]. Social Science Electronic Publishing, 2007, 32(32): 31-66. [10] Joseph G, Henry H A L. Soil nitrogen leaching losses in response to freeze–thaw cycles and pulsed warming in a temperate old field[J]. Soil Biology & Biochemistry, 2008, 40(7): 1947-1953. [11] 張瑞芳,王瑄,范昊明,等. 我國凍融區劃分與分區侵蝕特征研究[J]. 中國水土保持科學,2009,7(2):24-28. Zhang Ruifang, Wang Xuan, Fan Haoming, et al. Study onthe regionalization of freeze-thaw zones in China and the erosion characteristics[J]. Science of Soil and Water Conservation, 2009, 7(2): 24-28. (in Chinese with English abstract) [12] 徐國策,李占斌,李鵬,等. 丹江鸚鵡溝小流域土壤侵蝕和養分損失定量分析[J]. 農業工程學報,2013,29(10):160-167. Xu Guoce, Li Zhanbin, Li Peng, et al. Quantitative analysis of soil erosion and nutrient loss in Yingwugou watershed of the Dan River[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(10): 160-167. (in Chinese with English abstract). [13] 李婧,李占斌,李鵬,等. 模擬降雨條件下植被格局對徑流總磷流失特征的影響分析[J]. 水土保持學報,2010,24(4):27-30. Li Jing, Li Zhanbin,Li Peng, et al. Effect of vegetation pattern on phosphorus loss character under simulate rainfall condition[J]. Journal of Soil & Water Conservation, 2010, 24(4): 27-30. (in Chinese with English abstract). [14] 劉彥辰,王瑄,周麗麗,等. 凍融坡面土壤剝蝕率與侵蝕因子關系分析[J]. 農業工程學報,2016,32(8):136-141. Liu Yanchen, Wang Xuan, Zhou Lili, et al. Relationship analysis between soil detachment rate and erosion factors on freeze-thaw slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 136-141. (in Chinese with English abstract) [15] 李占斌,李社新,任宗萍,等. 凍融作用對坡面侵蝕過程的影響[J]. 水土保持學報,2015,29(5):56-60. Li Zhanbin, Li Shexin, Ren Zongping, et al. Effects of freezing -thawing on hillslope erosion process[J]. Journal of Soil & Water Conservation, 2015, 29(5): 56-60. (in Chinese with English abstract). [16] 魯克新,李占斌,張霞,等. 室內模擬降雨條件下徑流侵蝕產沙試驗研究[J]. 水土保持學報,2011,25(2):6-9. Lu Kexin, Li Zhanbin, Zhang Xia, et al. Experimental study on law of runoff-erosion-sediment yield under indoor simulated rainfall condition[J]. Journal of Soil & Water Conservation, 2011, 25(2): 6-9. (in Chinese with English abstract). [17] 王輝,王全九,邵明安. 人工降雨條件下黃土坡面養分隨徑流遷移試驗[J]. 農業工程學報,2006,22(6):39-44. Wang Hui, Wang Quanjiu, Shao Ming’an. Laboratory experiments of soil nutrient transfer in the loess slope with sur face runoff during simulated rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(6): 39-44. ( in Chinese with English abstract) [18] Cao L, Liang Y, Wang Y, et al. Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall[J]. Catena, 2015, 129: 1-8. [19] Pan C, Shangguan Z. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions[J]. Journal of Hydrology, 2006, 331(1/2): 178-185. [20] Xu Guoce, Zhang Tiegang, Li Zhanbin, et al. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau, China[J]. Catena, 2017, 158: 20-29. [21] 劉素媛,韓奇志. SB-YZCP人工降雨模擬裝置特性及應用研究[J]. 水土保持學報,1998(2):47-53. Liu Suyuan Han Qizhi. Study on characteristic and application of SB-YZCP artificial rainfall simulator[J]. Journal of Soil & Water Conservation, 1998(2): 47-53. (in Chinese with English abstract) [22] Wang G, Wu B, Zhang L, et al. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall[J]. Journal of Hydrology, 2014, 514: 180-191. [23] Nadeem S, B?rresen T, D?rsch P. Effect of fertilization rate and ploughing time on nitrous oxide emissions in a long-term cereal trail in south east Norway[J]. Biology & Fertility of Soils, 2015, 51(3): 353-365. [24] 周志軍, 呂大偉, 宋偉,等. 基于含水率和溫度變化的凍融黃土性能試驗[J]. 中國公路學報, 2013, 26(3):44-49. Zhou Zhijun, Lu Dawei, Song Wei, et al. Experiment on loess characteristics after freeze-thaw circle based on changes of moisture content and temperature[J]. China Journal of Highway & Transport, 2013, 26(3):44-49. (in Chinese with English abstract) [25] 王輝,王全九,邵明安. 前期土壤含水量對坡面產流產沙特性影響的模擬試驗[J]. 農業工程學報,24(5):65-68. Wang Hui, Wang Quanjiu, Shao Ming’an. Simulation experiment of effect of antecedent soil moisture content on characteristics of runoff and sediment from two soil sloping lands[J]. Transactions of the CSAE, 2008, 24(5): 65-68. (in Chinese with English abstract) [26] Chaudhari K, Flanagan D C, Norton L D. Polyacrylamide soil amendment effects on runoff and sediment yield on steep slopes: Part II. Natural rainfall conditions[J]. Transactions of the Asae, 2002, 45(45): 1327-1338. [27] Wilson B N, Hansen B, Stenlund D, et al. Performance of erosion control products on a highway embankment [J]. Transactions of the Asae, 2003, 46(4): 1113-1119. [28] Huang C, Bradford J M. Analyses of slope and runoff factors based on the WEPP erosion model[J]. Soil Science Society of America Journal, 1993, 57(5): 1176-1183. [29] Pan C, Shangguan Z. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions[J]. Journal of Hydrology, 2006, 331(1/2): 178-185. [30] Pinckney J L, Paerl H W, Tester P, et al. The role of nutrient loading and eutrophication in estuarine ecology[J]. Environmental Health Perspectives, 2001, 109(5): 699. [31] Hargrave A P, Shaykewich C F. Rainfall induced nitrogen and phosphorus losses from Manitoba soils[J]. Canadian Journal of Soil Science, 1997, 77(1): 59-65. [32] 宋陽,于曉菲,鄒元春,等. 凍融作用對土壤碳、氮、磷循環的影響[J]. 土壤與作物,2016,5(2):78-90. Song Yang, Yu Xiaofei, Zou Yuanchun, et al. Progress of freeze-thaw effects on carbon, nitrogen and phosphorus cyclings in soils[J]. Soils & Crops, 2016, 5(2): 78-90. (in Chinese with English abstract). [33] 周旺明,王金達,劉景雙,等. 凍融及枯落物對濕地土壤淋溶液的影響[J]. 中國環境科學,2008,28(10):927-932. Zhou Wangming, Wang Jinda, Liu Jingshuang, et al. The effect of freeze-thaw and litter on leachate of wetland soil in Sanjiang Plain, Northern China[J]. China Environmental Science, 2008, 28(10): 927-932. (in Chinese with English abstract). [34] Kothyari B P, Verma P K, Joshi B K, et al. Rainfall-runoff- soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India[J]. Journal of Hydrology, 2004, 293(1): 137-150. [35] Zhang X, Bai W, Gilliam F S, et al. Effects of in situ freezing on soil net nitrogen mineralization and net nitrification in fertilized grassland of northern China[J]. Grass & Forage Science, 2011, 66(3): 391-401. [36] Sharpley A N, Smith S J. Effects of cover crops on surface water quality[J]. 1991. Soil and Water Conserv, 41-49. [37] Edwards A C, Cresser M S. Freezing and its effect on chemical and biological properties of soil.[M]// Advances in Soil Science. Springer New York, 1992: 59-79. [38] Brooks P D, Williams M W, Schmidt S K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt[J]. Biogeochemistry, 1998, 43(1): 1-15. [39] Deluca T H, Keeney D R, Mccarty G W. Effect of freeze-thaw events on mineralization of soil nitrogen[J]. Biology & Fertility of Soils, 1992, 14(2): 116-120. [40] Fitzhugh R D, Driscoll C T, Groffman P M, et al. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem[J]. Biogeochemistry, 2001, 56(2): 215-238. [41] Haynes R J, Swift R S. Effects of air-drying on the adsorption and desorption of phosphate and levels of extractable phosphate in a group of acid soils, New Zealand[J]. Geoderma, 1985, 35(2): 145-157. [42] Hunt R J, Krabbenhoft D P, Anderson M P. Assessing hydrogeochemical heterogeneity in natural and constructed wetlands[J]. Biogeochemistry, 1997, 39(3): 271-293. [43] Zhu B, Li Z, Li P, et al. Soil erodibility, microbial biomass, and physical-chemical property changes during long-term natural vegetation restoration: A case study in the Loess Plateau, China[J]. Ecological Research, 2010, 25(3): 531-541. Effect of soil erodibility on nitrogen and phosphorus lossunder condition of freeze-thaw Cheng Yuting1, Li Peng1, Xu Guoce1※, Li Zhanbin1,2, Wang Tian1 (1., 710048,; 2.-,712100,) The freeze-thaw processes affect an area of 46.3% in China. The process of soil nutrient loss under freezing and thawing was seldom been studied. Under the condition of rainfall simulation, the characteristics of soil and nutrients loss under different soil water content (SWC) conditions were studied. The effects of freeze-thaw and erodibility on total nitrogen (TN) and total phosphorus (TP) losses on the loess slope were analyzed. Loess slope (LS) and freeze-thawed slope (FTS) were set, and we studied five SWCs, between 10% and 30%. The results showed that there was a significant difference in runoff/sediment associated TN and TP concentrations under different SWCs for two slopes (<0.05). Largest runoff-associated TN and TP losses were found when the SWC was 30% and the largest sediment-associated TN and TP losses were found when the SWC was 10% in the two slopes. The sediment-associated nutrient losses dominated the total nutrient loss in all treatments, and when the SWC was 20%, average sediment-associated TN and TP losses occupied 99% of totals in the LS and FTS. The K values decreased firstly and then increased in both LS and FTS and in low SWC area. FTS soil erodibility was greater than that of the LS with an average ratio of 1.4. The influence of runoff on sediment was positively linear. The absolute slope of the regression line between runoff rate and sediment yield rate was suitable as a soil erodibility indicator. The runoff-associated and sediment-associated total TN and TP loss rates increased linearly with runoff rate and sediment yield rate under different SWCs for the two slopes. The runoff-associated TN and TP losses were mainly influenced by runoff rate, and were weakly affected by soil erodibility (> 0.05). However, soil erodibility significantly influenced sediment-associated TN and TP losses. Since the sediment-associated TN and TP losses dominated the total TN and TP losses for the two slopes, soil erodibility also exhibited a significant influence on total TN and TP losses. The freeze-thaw effect increased total loss of TN by 1.6 times when the SWC was 10%. It increased total TP losses by 5 and 1.9 times when the SWC was 10% and 15%, respectively. Considering the SWC in the loess region was generally no more than 15%, the freeze-thaw would promote the loss of nitrogen and phosphorus in the loess region. The effect of soil erodibility on nitrogen loss was relevant to freezing and thawing. The nitrogen loss increased first and then decreased with the increase of soil erodibility before freezing and thawing. The nitrogen loss increased with the soil erodibility increased after freezing and thawing. While the effect of soil erodibility on phosphorus loss showed no relationship with freeze-thawing. The loss of phosphorus always increased with the soil erodibility increased. Therefore, a series of ecological construction measures should take to control soil erosion and reduce soil erodibility in order to reduce the nutrients loss in the loess region. The results provide a better understanding of soil and nutrient loss mechanisms under freeze-thaw conditions in the loess slope. soil water content; erosion; nitrogen; phosphorus; freeze-thaw; soil erodibility 10.11975/j.issn.1002-6819.2017.24.019 S157.1 A 1002-6819(2017)-24-0141-09 2017-07-20 2017-12-08 國家自然科學基金(Nos.41330858,41401316,41471226)和西安理工大學校基金(Nos. 310-252071604)聯合資助。 成玉婷,博士生。主要從事水土流失和非點源污染調控方面的研究。Email:chengyutingstar@163.com 徐國策,博士,副教授。主要從事水土流失與非點源污染模擬與調控方面的研究。Email:xuguoce_x@163.com 成玉婷,李 鵬,徐國策,李占斌,王 添. 凍融條件下土壤可蝕性對坡面氮磷流失的影響[J]. 農業工程學報,2017,33(24):141-149. doi:10.11975/j.issn.1002-6819.2017.24.019 http://www.tcsae.org Cheng Yuting, Li Peng, Xu Guoce, Li Zhanbin, Wang Tian. Effect of soil erodibility on nitrogen and phosphorus loss under condition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.019 http://www.tcsae.org


2.4 產流產沙與坡面氮磷流失的關系


3 討 論
4 結 論