張瑞瑞,文 瑤,伊銅川,陳立平,徐 剛
?
航空施藥霧滴沉積特性光譜分析檢測系統研發與應用
張瑞瑞,文 瑤,伊銅川,陳立平※,徐 剛
(1. 北京農業智能裝備技術研究中心,北京 100097; 2. 國家農業智能裝備工程技術研究中心,北京 100097; 3. 國家農業航空應用技術國際聯合研究中心,北京 100097; 4. 農業智能裝備技術北京市重點實驗室,北京 100097)
為快速獲取航空施藥霧滴沉積的連續分布特性,彌補傳統離散樣點取樣方式檢測不足,提升航空施藥霧滴沉積特性檢測準確性,該文結合光譜分析和熒光激發技術設計研發了基于光譜分析的航空施藥沉積特性檢測系統。系統包括信息采集模塊、采集裝置模塊和數據處理模塊3部分。配置質量分數1.0%的熒光示蹤劑溶液,采用農用植保無人機現場噴灑作業,同步放置霧滴獲取介質和水敏試紙樣本采集霧滴分布,系統采集霧滴獲取介質的光譜特征曲線。與水敏試紙圖像分析獲取的霧滴沉積特性參數結果對比分析,結果表明:霧滴獲取介質上的熒光示蹤劑在450~460 nm和500~520 nm波段范圍內產生顯著熒光效應,其光譜平均值與霧滴沉積特性參數呈顯著正相關。計算出450~460 nm和500~520 nm波段范圍光譜平均值,建立霧滴沉積特性參數的檢測多元線性回歸模型,建模決定系數達0.80以上,驗證決定系數達0.83以上,達到了較為理想的擬合結果。
航空;噴霧;農藥;噴霧模型;光譜分析;熒光激發;霧滴沉積
航空施藥技術由于受施藥機械、變量施藥技術等因素限制,導致資源有效利用率低以及農作物生產效率、產量和品質的下降[1-7]。作物上藥液的霧滴分布特性重要評價指標包括均勻性、沉降量等,霧滴的沉降量是檢驗藥液防治效果的直接指標,沉降藥液的覆蓋率和均勻性是優化航空施藥設備和施藥技術方案的重要指導[8-14]。
數字圖像分析技術廣泛用于航空噴霧效果的評估。祁力鈞等[15]利用水敏紙收集霧滴后通過圖像采集系統采集霧滴圖像并進行圖像分析,獲取霧滴粒徑分布及覆蓋率等參數,與激光粒度儀的測量結果比較,測量誤差在6%以內。徐廣春等[16]通過DepositScan軟件分析霧滴覆蓋率和霧滴密度,通過示蹤劑估測農藥沉積量,用以分析農藥霧滴在麥田的沉積分布及對灰飛虱防效影響。Zhang等[17]為評估噴霧系統的性能參數,利用固定翼飛機M-18B畫眉510G在5 m和4 m的海拔下進行噴霧,通過水敏紙和自主開發的圖像識別系統軟件測試了逆風條件下噴霧系統的噴幅有效寬度和霧滴沉積均勻性。陳盛德等[18]采用霧滴采集卡以收集噴施霧滴,掃描儀掃描霧滴采集卡后通過DepositScan軟件分析霧滴沉積參數,預測霧滴沉積的分布結果。
同時,基于熒光光譜儀測量霧滴采集器洗脫液的測量方法證明可有效評估航空施藥霧滴沉積效果。秦維彩等[19]以染料Rhodamine-B配置一定濃度溶液模擬農藥進行噴霧,用聚酯卡作物霧滴取樣器采集霧滴后,經去離子水洗脫,用熒光分光光度計測定熒光值,計算出藥液單位面積沉積量,用以研究噴灑參數對玉米冠層霧滴沉積分布的影響。張宋超等[20]利用熒光分光光度計測定洗脫液的熒光值,計算藥液在單位面積上的沉積,以此分析藥液的偏移情況。王昌陵等[21]采用聚乙烯軟管作為霧滴收集器,研究了飛行參數對霧滴空間質量平衡分布和旋氣流場分布的影響,配置熒光示蹤劑作為噴霧液,測試后噴霧洗脫液經熒光光譜儀測量熒光值,計算出單位面積沉積量和沉積率。連德旗等[22]采用聚酯卡、熒光分光光度計、卡羅米特紙卡等對噴霧沉積量、沉積密度及分布均勻性等參數進行采樣分析,研究了小型無人噴霧機工作參數對噴霧沉積的影響。
其他航空施藥霧滴沉積測量方式也隨著傳感器技術、光譜技術和遙感技術的發展,進行了相關研究。Salyani等[23]通過研究藥液沉積量對導體電阻率的影響,設計了一種基于可變電阻器原理的藥液沉積傳感器,并建立了利用自來水做藥液時的傳感器輸出電壓與藥液沉積量關系模型。張瑞瑞等[24]實現航空施藥霧滴沉積量快速獲取,與水敏紙圖像測量分析方法對比的分布曲線擬合度達到0.914 6,相對測量誤差分布在10%~50%。馬偉等[25]基于高光譜成像技術獲取感興趣的葉片區域的圖元,讀取相應的光譜值,進而分析葉片施藥后的藥效信息。北京農業信息技術研究中心[26]研究了一種對獲取的藥物云團探測區域霧滴分布的紅外成像光譜進行特征分析后反演藥物云團濃度圖像的方法。Zhang等[27]獲取噴藥一周后噴藥區域的衛星影像并計算植被指數,同時采集地面藥液沉積量,證明從衛星圖像計算的植被指數可用來評估大尺度農田的農用航空藥液噴施效果。張瑞瑞等[28]提出了航空施藥霧滴沉積特性分析系統的實現方法。
上述研究均可獲得藥液覆蓋范圍、霧滴粒徑大小等霧滴沉積分布特性,但基于熒光光譜儀測量洗脫液方法的采樣和洗脫處理過程繁瑣。水敏試紙測量方法在試驗過程中水敏試紙極易被油和水污染,對人員操作要求高。另外,近年隨著有人機低容量、超低容量施藥技術和無人機近地超低容量施藥技術的推廣應用,施藥噴霧霧滴粒徑越來越小,霧滴運動受作業過程中的擾流及細微湍流影響越來越大,霧滴靶標沉積的空間小區域差異性越來越顯著。基于水敏試紙、錫箔片等離散取樣進行霧滴靶標沉積分布檢測的方式已無法客觀反映真實的靶標霧滴沉積分布。綜上所述,傳統霧滴分布獲取方式已不能滿足當前農業航空施藥檢測應用需求。因此本文研發了基于光譜分析和熒光激發技術[29]的航空施藥霧滴沉積特性檢測系統,通過連續采集霧滴獲取介質的光譜特征曲線,建立霧滴沉積特性參數檢測模型,期望實現無人機施藥噴霧霧滴沉積特性參數的快速連續測量。
待測物質被紫外特征頻率的入射光照射后,其分子由基態能級躍遷至電子激發態的各個不同振動能級,激發態分子的不穩定性導致其與周圍分子撞擊而消耗部分能量,下降至第一電子激發態的最低振動能級,以光的形式釋放多余的能量,發出能反映其物質特性的分子熒光。熒光檢測就是對此特性進行分析的方法。由于物質分子結構不同,所吸收和發射的熒光波長有所不同,該特性可定性鑒別物質;同一種分子結構的物質,用同一波長的激發光照射,可以發射相同波長的熒光,若該物質的濃度不同,則濃度大時所發射的熒光強度也強,利用此特性可定量測定物質濃度[30-31]。
1.2.1 系統總體設計
航空施藥霧滴沉積特性分析系統的總體結構如圖1所示。混合熒光示蹤劑的溶液作為模擬農藥進行航空噴施,地面放置霧滴獲取介質收集霧滴分布。霧滴沉積特性檢測系統采集霧滴獲取介質的光譜特征曲線。經過檢測系統和霧滴沉積特性參數模型的處理計算將霧滴沉積特性參數指標實時顯示,以期快速評估航空施藥效果。

1.步進電機 2.光電限位器 3.紫外光源 4.光譜儀 5.霧滴獲取介質
1.2.2 硬件設計
系統硬件設計結構如圖2所示。系統由數據處理模塊、信息采集模塊、采集裝置模塊構成。

圖2 航空施藥霧滴沉積特性分析系統硬件結構圖
數據處理模塊選用Panasonic的FZ-M1系列平板計算機,采用Intel Celeron N2807處理器,安裝運行霧滴沉積特性檢測系統軟件,通過串口通信方式與微型光譜儀和微控制器(microcontroller unit,MCU)進行連接。海洋光學FLAME-S-VIS-NIR型微型光譜儀作為信息采集模塊,是整個分析系統的核心部件,光譜檢測范圍為340~1 014 nm,可測量2 048個像素點,信噪比250∶1,積分時間1~65 s。采集裝置模塊包括MCU,紫外激勵光源,2個步進電機,光電限位器等。微控制器選用8051系內核單片機,型號STC12C5410AD。紫外激勵光源選用日亞生產的紫外LED,中心波長為365 nm。步進電機選用SUMTOR生產的42HS系列二相混合式步進電機,步距精度±5%,定位力矩2.2 N·cm。霧滴獲取介質采用普通牛皮圓盤紙帶,寬度1.93 cm。光電限位器選用OMDHON對射式光電開關,可檢測距離為5 m。當采集完畢時光電限位器響應,MCU返回停止指令,軟件停止光譜采集并保存數據。
1.2.3 軟件設計
霧滴沉積特性檢測系統軟件應用Visual Studio 2015,選用C#語言編程開發實現。軟件包括采集參數設置、采集控制和數據分析等功能,功能模塊如圖3所示,其中采集參數設置包括積分時間、采樣頻率、平均次數和平滑度的設定、暗電流的校正標定,采集控制包括采集模式選擇、光譜曲線顯示和數據保存的功能。

圖3 航空施藥霧滴沉積特性分析系統軟件功能模塊圖
軟件整體流程如圖4所示。光譜儀、MCU和數據處理模塊連接成功后,根據系統工作環境設置采集參數,設置完成后啟動全波段光譜數據掃描,檢測曲線特征峰值,設置特征光譜檢測波段范圍及采集間隔。當接收微處理器返回的開始采集指令,繪制特征光譜的采集位置和熒光強度值的曲線圖。采集完畢后,軟件接收到微控制器返回的結束采集指令,保存光譜數據到指定文件路徑。

圖4 航空施藥霧滴沉積特性分析系統流程圖
2017年5月17日,航空施藥的霧滴沉積特性檢測試驗在北京市昌平區小湯山鎮國家精準農業示范基地進行,測試當天天氣晴好。試驗飛機及噴霧器技術參數如表1所示。

表1 飛機及噴霧器參數
試驗采用增白劑RQT-C-3作為熒光示蹤劑,配置質量分數為1.3%,1.0%,0.5%的熒光示蹤劑溶液作為模擬藥液分3次噴灑。霧滴獲取介質安裝在距地面1 m高的支架上,水敏試紙樣本點與霧滴獲取介質平行放置,試驗現場如圖5所示。霧滴獲取介質長度5 m,在0.5~4.5 m處等間距布置9個水敏試紙樣本點采集霧滴分布,依次標號樣點1到9。待噴灑完畢,迅速收集霧滴獲取介質和水敏試紙,分別用密封袋保存。
利用航空施藥質量評價系統iDAS[32]對水敏紙進行圖像分析,計算出熒光示蹤劑溶液霧滴沉積特性參數,包括霧滴浸染面積、面積覆蓋率和沉積量。其中霧滴浸染面積(mm2)是水敏紙被水洇濕后發生顯色反應的總面積。面積覆蓋率(%)是浸染面積和水敏試紙采樣面積比值。沉積量(L)為全部霧滴的總體積,假定霧滴在空氣中為球體,可根據浸染區域和水敏紙潤展系數換算得到的霧滴直徑計算得到。水敏紙的測量結果基于霧滴中水在水敏紙上的沉積浸染區域計算得到,是溶液中水的沉積特性參數。本系統的測量結果基于霧滴中熒光示蹤劑的熒光強度值計算得到,與霧滴中熒光在紙帶介質上沉積質量相關,與霧滴在紙帶介質上的浸染區域面積相關性極小。熒光示蹤劑溶液中熒光示蹤劑質量與水的質量按照溶解濃度線性相關,因此研究對水敏紙測量結果與系統測量結果進行比較分析。
利用霧滴沉積特性檢測系統連續采集霧滴獲取介質的光譜特征曲線,采集過程中積分時間100 ms,采集裝置模塊中步進電機轉速為120 r/min,長度5 m的霧滴獲取介質共采集光譜數據305組,取水敏試紙樣本點對應位置附近3點光譜數據計算平均值,作為該樣本點光譜特征曲線。
霧滴獲取介質原始光譜特征曲線(以熒光示蹤劑溶液質量分數1.0%為例)如圖6a所示,曲線除包含樣本點自身信息外,還包含了其他無關信息和噪聲,如儀器噪聲,雜散光等。光譜平滑旨在消除光譜數據的隨機噪聲,本文采用卷積平滑算法(savitzky-golay,S-G)對光譜曲線進行平滑,S-G平滑算法原理是通過多項式對光譜數據進行最小二乘擬合,不會造成光譜信號失真,處理結果如圖6b所示,該方法能有效去除光譜噪聲毛刺,較好地保存了光譜信息中的有效信息。
樣品因表面散射、光程變化等因素引起光譜差異,本文采用變量標準化(standard normalized variate,SNV)對光譜數據進行校正,其原理是基于設定光譜中各波長點的吸光度值滿足一定的正態分布,處理結果如圖6c所示,可見該方法扣除了光譜數據中的線性平移,有效實現了光譜曲線的標準正態化。

圖6 光譜曲線預處理
噴灑過質量分數1.0%熒光示蹤劑溶液的霧滴獲取介質光譜特征曲線經S-G和SNV處理后結果如圖7所示。

圖7 S-G、SNV處理后光譜特征曲線
觀察到不同采集位置點的光譜曲線光強值不同,但光譜曲線走勢基本一致。由于采集過程中通過紫外光源激發熒光,紫外光源的信息被采集,因此在340~400 nm的波段范圍內出現熒光強度飽和。為避免光源的影響,選擇440~1 014 nm波段范圍內的光譜數據分析。分析光譜曲線可知,450~460 nm波段范圍光譜曲線呈波谷形態,500~520 nm波段范圍的光譜曲線呈波峰形態。根據水敏試紙圖像分析結果圖7可知,450~460和500~520 nm波段范圍的光照強度值與霧滴分布特性參數呈正相關。由圖8可知,3 m處水敏紙測量方法測得的面積覆蓋率和沉積量最大,對應霧滴獲取介質樣點7的光譜特征曲線波谷和波峰的熒光強度值最大。

圖8 水敏試紙霧滴沉積分布
霧滴獲取介質分別采集質量分數為1.3%,1.0%,0.5%熒光示蹤劑溶液的霧滴分布后,通過霧滴沉積特性檢測系統掃描得到各溶液質量分數下霧滴獲取介質的光譜特征曲線。對光譜特征曲線進行S-G平滑和SNV標準正態變換處理后,根據光譜特征曲線分析結果,計算出450~460 nm和500~520 nm波段范圍的光譜平均值450-460和500-520。分別對溶液質量分數1.3%,1.0%,0.5%條件下9個樣本點的光譜平均值與水敏試紙圖像分析計算的霧滴浸染面積,面積覆蓋率和沉積量進行相關性分析,結果如表2所示。
由表2可知:熒光示蹤劑溶液質量分數為1.0%時,450~460 nm波段和500~520 nm波段光譜平均值和水敏紙圖像分析后得到的霧滴沉積分布特性參數相關系數絕對值高于溶液質量分數0.5%和1.3%時的相關系數絕對值,達0.92以上,呈顯著相關。因此選定熒光示蹤劑溶液質量分數1.0%進行霧滴沉積特性檢測系統的應用性能測試試驗。

表2 光譜參數與霧滴沉積特性的相關系數
注:450-460表示450~460 nm波段范圍的光譜平均值,下同。
Note: Spectral mean value in the band range of 450-460 nm was expressed as450-460, and the rest is the same.
2017年6月7日在北京市昌平區小湯山國家精準農業研究示范基地進行系統應用性能測試試驗,飛行設備采用TTA-T8-PRO-5型農業植保無人機。配置質量分數1.0%的熒光示蹤劑溶液重復3次藥液噴灑,飛行高度和速度每次均為2.0 m和1.5 m/s。霧滴獲取介質長度6 m,第1、2次試驗在0.5~5.5 m處等間距0.25 m布置21個樣本點并依次標號1~21和22~42,第3次試驗在0.5~5.3 m處等間距0.3 m布置了17個樣本點并依次標號43~59,霧滴獲取介質和水敏試紙安裝在距地面高度1 m的支架上。噴灑完畢后,密封保存霧滴獲取介質和水敏試紙。
通過霧滴沉積特性檢測系統采集對應59個水敏試紙樣本點位置的全波段光譜特征曲線,計算450~460和500~520 nm波段范圍的光譜平均值450-460和500-520,分別與水敏紙圖像分析測量的霧滴沉積特性參數(浸染面積、面積覆蓋率、沉積量)進行相關性分析,結果如表3所示。
結果顯示,450~460和500~520 nm波段范圍的光譜平均值與霧滴沉積特性參數(浸染面積、面積覆蓋率、沉積量)的相關系數絕對值均在0.80以上,其中500~520 nm波段范圍的光譜平均值與浸染面積的相關系數絕對值可以達0.91以上。因此選擇光譜平均值450-460和500-520建立霧滴沉積特性參數(浸染面積、面積覆蓋率、沉積量)檢測模型。其中1、2、3分別為預測浸染面積值、預測面積覆蓋率值和預測沉積量值,1、2分別表示光譜平均值450-460,500-520,R2、R2分別表示建模決定系數和驗證決定系數。對有效采集的59個樣本點,隨機選擇40組樣本數據建立霧滴分布特性參數檢測的多元線性回歸(multiple linear regression, MLR)模型,剩下19組進行模型驗證。

表3 光譜參數與霧滴沉積特性相關系數
注:配置質量分數1.0%的熒光示蹤劑溶液重復3次藥液噴灑。
Note: the fluorescent tracer solution with the mass fraction of 1% was sprayed in 3 times.
建立的浸染面積檢測模型如圖9a所示,建立的面積覆蓋率檢測模型如圖9b所示,建立的沉積量檢測模型如圖9c所示。MLR模型的建模決定系數達0.80以上,驗證決定系數達0.83以上。系統預測的霧滴沉積特性參數和水敏試紙測量值的結果對比如圖10所示。
由圖可知,基于光譜分析和熒光激發技術檢測霧滴沉積特性的方式和水敏試紙測量方法的一致性較好,但也存在一定的測量偏差,其中浸染面積測量相對誤差小于29.62%,其中41個點的測量相對誤差小于10%;面積覆蓋率相對誤差小于33.04%,其中40個點的測量相對誤差小于10%;沉積量相對誤差小于32.83%,其中38個點的測量相對誤差小于10%。產生測量偏差是由于受飛機飛行和環境因素的影響,使得小范圍內霧滴沉積分布可能有較大的變化。另外,噴灑后霧滴出現互相粘連也是產生測量偏差的主要原因之一。

注:Rc2、Rv2分別表示建模系數和驗證系數。

圖10 霧滴沉積測量值對比
基于光譜分析和熒光激發技術研發的霧滴沉積特性檢測系統硬件包括數據處理模塊、信息采集模塊、采集裝置模塊3部分,控制軟件包括采集參數設置、采集控制和數據分析功能模塊。結合硬件、軟件,系統可快速連續檢測霧滴沉積分布特性。
1)霧滴獲取介質在紫外光源的激勵下有顯著的熒光效應。其光譜特征曲線在450~460 nm波段范圍呈波谷形態,500~520 nm波段范圍呈波峰形態。
2)配置不同質量分數(0.5%,1.0%,1.3%)的熒光示蹤劑溶液噴灑后,霧滴獲取介質光譜特征曲線在450~460和500~520 nm波段范圍內的光譜平均值和的霧滴特性檢測參數相關系數絕對值達0.80以上,表明利用光譜分析和熒光激發技術進行霧滴沉積特性檢測的可行性。同時相比于質量分數0.5%和1.3%,熒光示蹤劑質量分數1.0%時的霧滴獲取介質在450~460和500~520 nm波段范圍的光譜平均值和霧滴特性檢測參數相關系數絕對值達0.92以上。因此選擇配置質量分數1.0%的熒光示蹤劑溶液進行系統應用性能測試試驗。
3)系統應用性能測試試驗建立霧滴沉積特性參數檢測的多元線性回歸模型,其中模型建模決定系數達0.80以上,驗證決定系數達0.83以上,建模精度能滿足霧滴沉積特性參數檢測的要求。該方法彌補了傳統水敏試紙離散取樣測量方法的不足,提高了霧滴沉積特性檢測數據的客觀性。
[1] 屠豫欽. 農藥劑型和制劑與農藥的劑量轉移[J]. 農藥學學報,1999,1(1):1-6.
Tu Yuqin. Pesticide formulation and dose transfer[J]. Chinese Journal of Pesticide Science, 1999, 1(1): 1-6. (in Chinese with English abstract)
[2] 傅澤田,祁力鈞,王俊紅. 精準施藥技術研究進展與對策[J]. 農業機械學報,2007,38(1):189-192. Fu Zetian, Qi Lijun, Wang Junhong. Developmental tendency and strategies of precision pesticide application techniques[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 189-192. (in Chinese with English abstract)
[3] 薛新宇,梁建,傅錫敏. 我國航空植保技術的發展前景[J]. 中國農機化,2008(5):72-74.
Xue Xinyu, Liang Jian, Fu Ximin. Prospect of aviation plant protection in China[J]. Chinese Agricultural Mechanization, 2008(5): 72-74. (in Chinese with English abstract)
[4] 周志艷,臧英,羅錫文,等. 中國農業航空植保產業技術創新發展戰略[J]. 農業工程學報,2013,29(24):1-10.
Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)
[5] 張東彥,蘭玉彬,陳立平,等. 中國農業航空施藥技術研究進展與展望[J]. 農業機械學報,2014,45(10):53-59.
Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract)
[6] 朱傳銀,王秉璽. 航空噴霧植保技術的發展與探討[J]. 植物保護,2014(5):1-7.
Zhu Chuanyin, Wang Bingxi. Development and discussion of aerial spray technology in plant protection[J]. Plant Protection, 2014(5): 1-7. (in Chinese with English abstract)
[7] 羅錫文,廖娟,胡煉,等. 提高農業機械化水平促進農業可持續發展[J]. 農業工程學報,2016,32(1):1-11.
Luo Xiwen, Liao Juan, Hu lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[8] Franz E, Bouse L F, Carlton J B, et al. Aerial spray deposit relations with plant canopy andweather parameters[J]. Transactions of the Asae, 1998, 41(4): 959-966.
[9] Ebert T A, Taylor R A, Downer R A, et al. Deposit structure and efficacy 2: Trichoplusia ni and fipronil[J]. Pesticide Science, 1999, 55(8): 793-798.
[10] Tsai M Y, Kai E, Yost R M G, et al. The Washington aerial spray drift study: Modeling pesticide spray drift deposition from an aerial application[J]. Atmospheric Environment, 2005, 39(33): 6194-6203.
[11] Huang Y, Hoffmann W C, Lan Y, et al. Development of a spray system for an unmanned aerial vehicle platform[J]. Applied Engineering in Agriculture, 2008, 25(6): 803-809.
[12] 薛新宇,蘭玉彬. 美國農業航空技術現狀和發展趨勢分析[J].農業機械學報,2013,44(5):194-201.
Xue Xinyu, Lan Yubin. Agricultural aviation applications in USA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 194-201. (in Chinese with English abstract)
[13] 廖娟,臧英,周志艷,等. 作物航空噴施作業質量評價及參數優選方法[J]. 農業工程學報,2015,31(增刊2):38-46. Liao Juan, Zang Ying, Zhou Zhiyan, et al. Quality evaluation method and optimization of operating parameters in crop aerial spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 38-46. (in Chinese with English abstract)
[14] 呂曉蘭,傅錫敏,宋堅利,等. 噴霧技術參數對霧滴飄移特性的影響[J]. 農業機械學報,2011,42(1):59-63.
Lü Xiaolan, Fu Ximin, Song Jianli, et al. Influence of spray operating parameters on spray drift[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(1): 59-63. (in Chinese with English abstract)
[15] 祁力鈞,胡開群,莽璐,等. 基于圖像處理的霧滴檢測技術[J]. 農業機械學報,2009,40(增刊1):48-51.
Qi Lijun, Hu Kaiqun, Mang Lu, et al. Droplet detection based on image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(Supp.1): 48-51.
[16] 徐廣春,徐德進,許小龍,等. 農藥霧滴在麥田的沉積分布及其對灰飛虱防效的影響[J]. 西南農業學報,2015,28(1):140-145.
Xu Guangchun, Xu Dejin, Xu Xiaolong, et al. Pesticide droplets deposition and distribution in wheat field andits impact on control efficacy of small brown planthopper[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 140-145. (in Chinese with English abstract)
[17] Zhang Dongyan, Chen Liping, Zhang Ruirui, et al. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510 G airplanes[J]. International Journal of Agricultural & Biological Engineering, 2015, 8(2):21-30.
[18] 陳盛德,蘭玉彬,李繼宇,等. 小型無人直升機噴霧參數對雜交水稻冠層霧滴沉積分布的影響[J]. 農業工程學報,2016,32(17):40-46.
Chen Shengde, Lan Yubin, Li Jiyu, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 40-46. (in Chinese with English abstract)
[19] 秦維彩,薛新宇,周立新,等. 無人直升機噴霧參數對玉米冠層霧滴沉積分布的影響[J]. 農業工程學報,2014,30(5):50-56.
Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract)
[20] 張宋超,薛新宇,秦維彩,等. N-3型農用無人直升機航空施藥飄移模擬與試驗[J]. 農業工程學報,2015,31(3):87-93.
Zhang Songchao, Xue Xinyu, Qin Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 87-93. (in Chinese with English abstract)
[21] 王昌陵,何雄奎,王瀟楠,等. 基于空間質量平衡法的植保無人機施藥霧滴沉積分布特性測試[J]. 農業工程學報,2016,32(24):89-97.
Wang Changling, He Xiongkui, Wang Xiaonan, et al. Distribution characteristics of pesticide application droplets deposition of unmanned aerial vehicle based on testing method of deposition quality balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 89-97. (in Chinese with English abstract)
[22] 連德旗,王世恒,徐銘辰,等. 小型無人飛行噴霧機噴霧性能試驗研究與分析[J]. 農機化研究,2017,39(5):197-201.
Lian Deqi, Wang Shiheng, Xu Mingchen, et al. Experimental study and analysis on spray characteristics of small scale unmanned aerial spraying in soybean field[J]. Journal of Agricultural Mechanization Research, 2017, 39(5): 197-201. (in Chinese with English abstract)
[23] Salyani M, Serdynski J. Development of a sensor for spray deposition assessment[J]. Transactions of the Asae, 1990, 33(5):1464-1469.
[24] 張瑞瑞,陳立平,蘭玉彬,等. 航空施藥中霧滴沉積傳感器系統設計與實驗[J]. 農業機械學報,2014,45(8):123-127.
Zhang Ruirui, Chen Liping, Lan Yubin, et al. Development of a deposit sensing system for aerial spraying application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 123-127. (in Chinese with English abstract)
[25] 馬偉,王秀,夏浪,等. 基于高光譜成像的不同藥滴粒徑的藥效試驗裝置開發[J]. 農業工程技術,2016,10:44-45.
[26] 北京農業信息技術研究中心. 航空施藥中藥霧分布與飄移趨勢遙測系統及方法:201110209409.0[P]. 2012-01-11.
[27] Zhang Dongyan, Lan Yubin, Wang Xiu, et al. Assessment of aerial agrichemical spraying effect using moderate-resolution satellite imagery[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1971-1977.
張東彥,蘭玉彬,王秀,等. 基于中分辨衛星影像的農用航空噴藥效果評估[J]. 光譜學與光譜分析,2016,36(6):1971-1977. (in English with Chinese abstract)
[28] 張瑞瑞,徐剛,陳立平,等. 航空施藥霧滴沉積特性分析系統:CN103558130A[P].2014-02-05.
[29] 李曉婷,王紀華,朱大洲,等. 果蔬農藥殘留快速檢測方法研究進展[J]. 農業工程學報,2011,27(增刊2):363-370.
Li Xiaoting, Wang Jihua, Zhu Dazhou, et al. Research progress of fast detection methods of fruits and vegetables pesticide residues[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 363-370. (in Chinese with English abstract)
[30] 王忠東,關曉晶,王玉田,等. 基于CCD器件的農藥熒光檢測系統的研究[J]. 光學技術,2005,31(5):653-654.
Wang Zhongdong, Guan Xiaojing, Wang Yutian, et al. Study on fluorescence detection system for pesticides based on charge-coupled devices[J]. Optical Technique, 2005, 31(5): 653-654. (in Chinese with English abstract)
[31] 王忠東,閆鐵,王寶輝. 土壤中有機農藥熒光檢測研究[J]. 光譜學與光譜分析,2009,29(2):479-482.
Wang Zhongdong, Yan Tie, Wang Baohui. Study on experiment of fluorescence spectra detection of organic pesticides in soil[J]. Spectroscopy and Spectral Analysis, 2009, 29(2): 479-482. (in Chinese with English abstract)
[32] Xu Gang, Chen Liping, Zhang Ruirui. An image processing system for evaluation of aerial application quality[C]// International Conference on Intelligent Information Processing. ACM, 2016, No. 53.
Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology
Zhang Ruirui, Wen Yao, Yi Tongchuan , Chen Liping※, Xu Gang
(1.100097, C; 2.100097,; 3.100097,; 4.100097,)
To evaluate the droplet deposition in aerial spraying real-timely and accurately, aerial spray pattern measurement system was designed combining with spectral analysis and fluorescence excitation technology. The hardware of the system consisted of modules of information acquisition module, data acquisition module, and data processing module. FLAME-S-VIS-NIR micro spectrometer was selected as information acquisition module which is produced by Ocean Optics. Micro spectrometer was the core component of the aerial spray pattern measurement system. The acquisition module included microcontroller unit, droplet collection medium, Ultraviolet excitation light, stepper motors, and photoelectric limiter and so on. The software of the system includes the function of spectrometer connection, parameter setting, spectral data collection, display and storage. At first, the solution of fluorescent tracer with mass fraction of 0.5%, 1.0% and 1.3% was sprayed individually by the sprayer installed on the agricultural plant protection unmanned aerial vehicle. Droplet deposition was collected by droplet collection medium and water sensitive paper synchronously. The spectral characteristic curve of droplet collection medium was scanned and saved by the software of aerial spray pattern measurement system. The spectral characteristic curve of sample point was processed by savitzky-golay smoothing and standard normalized variate, the trend of spectral curve was analyzed. Without the effect of ultraviolet light on the band removal of 340-400 nm, the result which was observed and analyzed from the band range of 440-1 014 nm showed that the spectral band range of 450-460 nm presented a trough shape, and the spectral band range of 500-520 nm showed peak shape. Droplet deposition characteristic parameter which was obtained from the image analysis of water sensitive paper included impregnation area, area coverage and deposition. Compared with the result obtained by water sensitive paper, the analysis result indicated that the solution of fluorescent tracer on the droplet capture medium had produced significant fluorescence effect in the wavelength range of 450-460 nm and 500-520 nm. The spectral average value of the wavelength range of 450-460 nm and 500-520 nmwas calculated. And the correlation coefficient of spectral average value and droplet deposition was up to 0.80. The results showed that it was feasible for the detection of droplet deposition characteristics based on spectral analysis and fluorescence excitation technique. The detection effect of droplet deposition with the different mass fraction of fluorescent tracer solution was analyzed. Compared with the mass fraction 0.5% and 1.3% of fluorescent tracer solution, the correlation coefficient between spectral average valueand droplet deposition was more than 0.92 when the mass fraction of fluorescent tracer solution was 1.0%. Therefore, a fluorescent tracer solution with mass fraction 1.0% was adopted for the detection of performance test of the system. The performance test of the system was carried out in the field. Fifty nine sample points were collected effectively, and the multivariate linear regression model of the droplet deposition was built based on the spectral average value which was calculated by randomly selection of 40 sample points. The rest of 19 sample points was used to validate the multivariate linear regression model. The model decision coefficientwas about 0.80, and the verification coefficient was about 0.83. The modeling accuracy can satisfy the requirements of droplet deposition characteristic parameter detection. This method could provide support for the detection of droplet deposition characteristics rapidly and continuously in aerial spraying.
aviation; spraying; pesticides; spray pattern; spectrum analysis; fluorescence excitation; droplet deposition
10.11975/j.issn.1002-6819.2017.24.011
TP212.9
A
1002-6819(2017)-24-0080-08
2017-06-28
2017-11-01
國家自然科學基金項目(31601228);國家重點研發計劃—地面與航空高工效施藥技術及智能化裝備(2016YFD0200701-2);北京市自然科學基金項目(6164032)
張瑞瑞,博士,副研究員,主要從事農業航空裝備、傳感器等技術研究。Email:zhangrr@nercita.org.cn
陳立平,研究員,主要從事農業智能裝備技術及應用研究。Email:chenlp@nercita.org.cn
中國農業工程學會會員:陳立平(E040100186M)
張瑞瑞,文 瑤,伊銅川,陳立平,徐 剛. 航空施藥霧滴沉積特性光譜分析檢測系統研發與應用[J]. 農業工程學報,2017,33(24):80-87. doi:10.11975/j.issn.1002-6819.2017.24.011 http://www.tcsae.org
Zhang Ruirui, Wen Yao, Yi Tongchuan, Chen Liping, Xu Gang. Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 80-87. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.011 http://www.tcsae.org