重視思想方法的教學(xué)是以人為本的教育理念下培養(yǎng)學(xué)生素養(yǎng)為目標(biāo)的需要。正如布魯納所說(shuō):“不管他們將來(lái)從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神、數(shù)學(xué)的思維方法、研究方法,卻隨時(shí)隨地發(fā)生作用,使他們受益終生。”正是由于數(shù)學(xué)思想方法是如此的重要,數(shù)學(xué)教學(xué)不能單純只教給學(xué)生它的概念、公式、定理、法則,更重要的要教給學(xué)生這些內(nèi)容反映出來(lái)的數(shù)學(xué)思想方法。下面我就談?wù)勗谛W(xué)數(shù)學(xué)教學(xué)中,我是如何滲透數(shù)學(xué)思想方法:
一、改變應(yīng)試教育觀念,創(chuàng)新數(shù)學(xué)思想方法
數(shù)學(xué)思想方法隱含在數(shù)學(xué)知識(shí)體系里,是無(wú)“形”的,而數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)都明顯地寫在教材中,是有“形”的。作為教師首先要改變應(yīng)試教育觀念,從思想上不斷提高對(duì)滲透數(shù)學(xué)思想方法重要性的認(rèn)識(shí),把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí)納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對(duì)于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個(gè)總體設(shè)計(jì),提出不同階段的具體教學(xué)要求。在小學(xué)數(shù)學(xué)教學(xué)中,教師不能僅僅滿足于學(xué)生獲得正確知識(shí)的結(jié)論,而應(yīng)該著力于引導(dǎo)學(xué)生對(duì)知識(shí)形成過(guò)程的理解。例如,長(zhǎng)方體和正方體的認(rèn)識(shí)概念教學(xué),可以按下列程序進(jìn)行:①由實(shí)物抽象為幾何圖形,建立長(zhǎng)方體和正方體的表象;②在表象的基礎(chǔ)上,指出長(zhǎng)方體和正方體特點(diǎn),使學(xué)生對(duì)長(zhǎng)方體和正方體有一個(gè)更深層次的認(rèn)識(shí);③利用長(zhǎng)方體和正方體的各種表象,分析其本質(zhì)特征,抽象概括為用文字語(yǔ)言表達(dá)的長(zhǎng)方體和正方體的概念;④使長(zhǎng)方體和正方體的有關(guān)概念符號(hào)化。顯然,這一教學(xué)過(guò)程,既符合學(xué)生由感知到表象,再到概念的認(rèn)知規(guī)律,又能讓學(xué)生從中體會(huì)到教師是如何應(yīng)用數(shù)學(xué)思想方法,對(duì)有聯(lián)系的材料進(jìn)行對(duì)比的,對(duì)空間形式進(jìn)行抽象概括的,對(duì)教學(xué)概念進(jìn)行形式化的。
二、課堂教學(xué)中及時(shí)滲透數(shù)學(xué)思想方法
為了更好地在小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法,教師不僅要對(duì)教材進(jìn)行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。在教學(xué)過(guò)程中,我經(jīng)常通過(guò)以下途徑及時(shí)向?qū)W生滲透數(shù)學(xué)思想方法:①在知識(shí)的形成過(guò)程中滲透。如概念的形成過(guò)程,結(jié)論的推導(dǎo)過(guò)程等,這些都是向?qū)W生滲透數(shù)學(xué)思想和方法的極好機(jī)會(huì)。例如,在“面積與面積單位”一課教學(xué)中,當(dāng)學(xué)生無(wú)法直接比較兩個(gè)圖形面積的大小時(shí),引進(jìn)“小方塊”,并把它一個(gè)一個(gè)地鋪在被比較的兩個(gè)圖形上,這樣,不僅比較出了兩個(gè)圖形的大小,而且,使兩個(gè)圖形的面積都得到了“量化”。使形的問(wèn)題轉(zhuǎn)化為數(shù)的問(wèn)題。在這一過(guò)程中,學(xué)生親身體驗(yàn)到“小方塊”所起的作用。接著又通過(guò)“小方塊”大小必須統(tǒng)一的教學(xué)過(guò)程,使學(xué)生深刻地認(rèn)識(shí)到:任何量的量化都必須有一個(gè)標(biāo)準(zhǔn),而且標(biāo)準(zhǔn)要統(tǒng)一。很自然地滲透了“單位”思想。②在問(wèn)題的解決過(guò)程中滲透。如:教學(xué)“雞兔同籠” 這一課時(shí),在解決問(wèn)題的過(guò)程中,用圖表、課件展示的方法讓學(xué)生逐步領(lǐng)會(huì)“假設(shè)”這種策略的奧妙所在。③在復(fù)習(xí)小結(jié)中滲透。在章節(jié)小結(jié)、復(fù)習(xí)的數(shù)學(xué)教學(xué)中,我們要注意從縱橫兩個(gè)方面,總結(jié)復(fù)習(xí)數(shù)學(xué)思想與方法,使師生都能體驗(yàn)到領(lǐng)悟數(shù)學(xué)思想,運(yùn)用數(shù)學(xué)方法,提高訓(xùn)練效果,減輕師生負(fù)擔(dān),走出題海誤區(qū)的輕松愉悅之感。如教學(xué) “梯形面積”這一單元之后,我及時(shí)幫助學(xué)生依靠梯形面積的推導(dǎo)過(guò)程回憶平行四邊形的面積、三角形的面積公式的推導(dǎo)方法,使學(xué)生能清楚地意識(shí)到:“轉(zhuǎn)化”是解決問(wèn)題的有效方法。
三、讓學(xué)生學(xué)會(huì)自覺(jué)運(yùn)用數(shù)學(xué)思想方法
數(shù)學(xué)思想方法的教學(xué),不僅是為了指導(dǎo)學(xué)生有效地運(yùn)用數(shù)學(xué)知識(shí)、探尋解題的方向和入口,更是對(duì)培養(yǎng)人的思維素質(zhì)有著特殊不可替代的意義。學(xué)生做練習(xí),不僅對(duì)已經(jīng)掌握的數(shù)學(xué)知識(shí)以及數(shù)學(xué)思想方法會(huì)起到鞏固和深化的作用,而且還會(huì)從中歸納和提煉出新的數(shù)學(xué)思想方法。學(xué)生按照例題師范的程序與格式解答和例題相同類型的習(xí)題,實(shí)際上是數(shù)學(xué)思想方法的機(jī)械運(yùn)用。此時(shí),并不能肯定學(xué)生已領(lǐng)會(huì)了所用的數(shù)學(xué)思想方法,只有當(dāng)學(xué)生將它用于新的情景,解決其他有關(guān)的問(wèn)題并有創(chuàng)意時(shí),才能肯定學(xué)生對(duì)這一教學(xué)本質(zhì)、數(shù)學(xué)規(guī)律有了深刻的認(rèn)識(shí)。
對(duì)學(xué)生進(jìn)行數(shù)學(xué)思想方法的滲透必定要經(jīng)歷一個(gè)循環(huán)往復(fù)、螺旋上升的過(guò)程,往往是幾種思想方法交織在一起,在教學(xué)過(guò)程中教師要依據(jù)具體情況,有效進(jìn)行數(shù)學(xué)思想方法的滲透。