999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

小麥分子標(biāo)記數(shù)據(jù)庫(kù)的建立

2017-12-26 18:56:39李瑋宋國(guó)琦陳明麗高潔張淑娟李玉蓮張榮志王姣韓小東李根英宋華東
山東農(nóng)業(yè)科學(xué) 2017年11期
關(guān)鍵詞:數(shù)據(jù)庫(kù)

李瑋+宋國(guó)琦+陳明麗+高潔+張淑娟+李玉蓮+張榮志+王姣+韓小東+李根英+宋華東

摘要:為了有效利用已經(jīng)開(kāi)發(fā)的小麥分子標(biāo)記,加強(qiáng)分子標(biāo)記載體材料及檢測(cè)數(shù)據(jù)的交流利用,掌握育種親本的基因型組成,本研究通過(guò)收集整理已發(fā)表的分子標(biāo)記及其載體材料、分子標(biāo)記檢測(cè)結(jié)果和開(kāi)展育種親本分子標(biāo)記檢測(cè),建立起小麥分子標(biāo)記數(shù)據(jù)庫(kù)。共收錄分子標(biāo)記信息311條,分子標(biāo)記載體材料27個(gè),分子標(biāo)記檢查數(shù)據(jù)19 006條,檢測(cè)育種親本1 784份。本數(shù)據(jù)庫(kù)的建立可助推小麥分子育種共享平臺(tái)建設(shè)。

關(guān)鍵詞:小麥;分子標(biāo)記;載體材料;數(shù)據(jù)庫(kù)

中圖分類號(hào):S512.103文獻(xiàn)標(biāo)識(shí)號(hào):A文章編號(hào):1001-4942(2017)11-0001-12

Construction of Wheat Molecular Marker Database

Li Wei1,2, Song Guoqi1,2, Chen Mingli1,2, Gao Jie1,2, Zhang Shujuan1,2, Li Yulian1,2,

Zhang Rongzhi1,2, Wang Jiao1,2, Han Xiaodong1,2, Li Genying1,2, Song Huadong2,3

(1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;

2. Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley,

Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China;

3. Shandong Cotton Research Center, Jinan 250100, China)

AbstractIn order to effectively utilize published wheat molecular markers, enhance exchange and application of marker-donor materials and data, and understand the genotype of breeding parents, the wheat molecular marker database was established through collection and systematization of published molecular marker information, marker-donor materials, and marker detection results. Three hundred and eleven molecular markers, 27 marker-donor materials, 19 006 detection records and 1 784 breeding parents were included. The establishment of the database will promote the development of wheat molecular breeding platform.

KeywordsWheat; Molecular marker; Marker-donor material; Database

隨著檢測(cè)、測(cè)序等技術(shù)的發(fā)展,分子標(biāo)記技術(shù)已被廣泛應(yīng)用于基因定位與克隆、數(shù)量性狀位點(diǎn)(QTL)分析、關(guān)聯(lián)分析、比較基因組學(xué)、遺傳多樣性評(píng)估、系統(tǒng)發(fā)生學(xué)和全基因組選擇等生命科學(xué)領(lǐng)域。分子育種以分子標(biāo)記輔助選擇和轉(zhuǎn)基因?yàn)橹饕獌?nèi)容。由于對(duì)轉(zhuǎn)基因產(chǎn)品的安全性存在爭(zhēng)議,將分子標(biāo)記輔助選擇和傳統(tǒng)育種相結(jié)合成為在一定時(shí)期內(nèi)分子育種應(yīng)用的主要形式[1]。傳統(tǒng)育種通過(guò)對(duì)性狀的選擇實(shí)現(xiàn)遺傳改良,存在周期長(zhǎng)、效率低等缺點(diǎn)。分子標(biāo)記輔助選擇通過(guò)對(duì)分子標(biāo)記進(jìn)行選擇實(shí)現(xiàn)對(duì)目標(biāo)基因型的選擇,包括前景選擇和背景選擇。前景選擇即對(duì)與目標(biāo)基因緊密連鎖的分子標(biāo)記進(jìn)行選擇,可以實(shí)現(xiàn)早期選擇,減小選擇群體;背景選擇即對(duì)遺傳背景的選擇,可加快遺傳背景的恢復(fù)速度,縮短育種年限,減輕連鎖累贅[2,3],從而提高育種效率。

小麥?zhǔn)鞘澜缟戏N植范圍最廣、最重要的糧食作物之一,以小麥(面粉)作為主食的人口占世界人口的35%[4]。在小麥中,分子標(biāo)記最早被用于連鎖分析[5],為后續(xù)的分子標(biāo)記輔助選擇奠定了基礎(chǔ)。目前,小麥中開(kāi)發(fā)的分子標(biāo)記所針對(duì)基因的共同特點(diǎn)是遺傳力低、一般為隱性基因、對(duì)應(yīng)的表型鑒定困難或昂貴、需要多基因聚合,主要包括抗病、農(nóng)藝和品質(zhì)性狀等[6]。從19世紀(jì)80年代后期開(kāi)始,分子標(biāo)記技術(shù)被廣泛用于小麥實(shí)踐[7]。澳大利亞、美國(guó)、加拿大、墨西哥(國(guó)際玉米小麥改良中心)、阿根廷、英國(guó)、法國(guó)、土耳其和印度等國(guó)家都開(kāi)展了相關(guān)研究項(xiàng)目,主要使用的分子標(biāo)記為STS、SSR、SNP、SCAR、CAPS等。利用分子標(biāo)記輔助基因確認(rèn)的報(bào)道有抗赤霉病、抗穗發(fā)芽、抗白粉病、抗葉銹病、抗葉斑病、染色體代換、抗稈銹病、高分子量谷蛋白亞基等;利用分子標(biāo)記輔助回交的報(bào)道有高分子量谷蛋白亞基改良,同時(shí)導(dǎo)入抗小麥吸漿蟲(chóng)、抗赤霉病和葉銹病基因,多個(gè)白粉病基因?qū)耄蚜5鞍踪|(zhì)含量改良,面團(tuán)特性、持久銹病抗性和矮稈改良,抗條銹基因?qū)耄顾氚l(fā)芽QTL導(dǎo)入等;進(jìn)行聚合基因或QTL的報(bào)道有抗白粉病、抗葉銹病、抗赤霉病、抗禾谷孢囊線蟲(chóng)、抗穗發(fā)芽和籽粒蛋白質(zhì)含量等[6]。與小麥籽粒重量相關(guān)的基礎(chǔ)性研究也已經(jīng)開(kāi)展,目前開(kāi)發(fā)了粒重、粒寬、細(xì)胞分裂素氧化酶、細(xì)胞壁轉(zhuǎn)化酶、果聚糖合成酶、蔗糖合成酶等的分子標(biāo)記,可用于進(jìn)一步改良粒重,提高產(chǎn)量潛力[8]。何中虎等[9]通過(guò)對(duì)國(guó)內(nèi)外發(fā)表的連鎖標(biāo)記進(jìn)行驗(yàn)證優(yōu)化,將這些標(biāo)記用于親本鑒定和高世代材料的基因確認(rèn),還用于分離世代抗病性和品質(zhì)性狀的選擇。隨著分子標(biāo)記輔助改良品系在育種中的應(yīng)用,2005年首個(gè)利用分子標(biāo)記輔助選擇育成的商業(yè)化小麥品種“Patwin”在美國(guó)上市。隨后加拿大的“Lillian”和“Goodeve”、阿根廷的“BIOINTA 2004”也相繼上市,這些分子育種最終產(chǎn)品的上市標(biāo)志著分子育種在實(shí)踐中取得了成功。endprint

早期開(kāi)發(fā)的分子標(biāo)記多與目標(biāo)性狀連鎖,由于連鎖標(biāo)記并非控制性狀的基因本身,會(huì)因?yàn)榛蛑亟M而喪失連鎖關(guān)系,降低選擇效率,甚至選擇無(wú)效,限制了它們的應(yīng)用。2003年Andersen和Lübberstedt[10]提出功能標(biāo)記(functional markers, FMs)概念,指根據(jù)基因內(nèi)能引起表型變異的多態(tài)性位點(diǎn)開(kāi)發(fā)的分子標(biāo)記,即功能標(biāo)記所檢測(cè)位點(diǎn)的等位變異是導(dǎo)致表型變異的原因。小麥?zhǔn)钱愒戳扼w植物,有A、B、D三個(gè)關(guān)系較近的亞基因組,基因組大小17 Gb[11,12]。到目前為止,研究清楚的多為由單基因控制的簡(jiǎn)單性狀,對(duì)多基因控制的復(fù)雜性狀沒(méi)有突破性進(jìn)展。功能標(biāo)記開(kāi)發(fā)受功能已知、序列明確、與表型關(guān)聯(lián)的基因數(shù)量限制,因而進(jìn)展緩慢。2012年Liu等[13]對(duì)已經(jīng)公布的小麥功能標(biāo)記進(jìn)行了系統(tǒng)總結(jié),包括小麥加工品質(zhì)、農(nóng)藝性狀和抗病性相關(guān)的97個(gè)小麥功能標(biāo)記,涉及30多個(gè)遺傳位點(diǎn)。2016年Rasheed等[14]為了實(shí)現(xiàn)大量功能標(biāo)記的高通量低成本檢測(cè),開(kāi)發(fā)出70個(gè)通過(guò)KASP技術(shù)檢測(cè)的SNP標(biāo)記,并對(duì)這些標(biāo)記的可靠性進(jìn)行了驗(yàn)證。這些SNP標(biāo)記約有一半是由STS等非SNP標(biāo)記轉(zhuǎn)化而來(lái),另一半是新開(kāi)發(fā)的,檢測(cè)基因位點(diǎn)數(shù)增加有限。

目前,我國(guó)的農(nóng)作物育種還是以常規(guī)育種為主,基于基因水平的選擇剛剛起步。品種選育主要依靠育種家的經(jīng)驗(yàn),育種過(guò)程中存在“周期長(zhǎng)、效率低、預(yù)見(jiàn)性差”等問(wèn)題。其中,以下幾個(gè)方面的因素限制了分子育種技術(shù)的普及性應(yīng)用。一是親本材料的基因型組成不清晰。親本材料是優(yōu)良基因的載體,是進(jìn)行分子標(biāo)記輔助選擇的基礎(chǔ),只有明確了親本材料含有哪些優(yōu)異基因,才能利用分子標(biāo)記輔助選擇技術(shù)將其中的優(yōu)異基因快速轉(zhuǎn)育到新品種(系)中。二是獲取含有優(yōu)異基因載體材料的信息渠道不暢。在小麥上已經(jīng)開(kāi)發(fā)出不少與抗病、優(yōu)質(zhì)、高產(chǎn)等重要農(nóng)藝性狀緊密連鎖的分子標(biāo)記,但是分子標(biāo)記的載體材料被保存在標(biāo)記的研發(fā)單位,需要這些材料的育種單位不能及時(shí)獲得這些資源。三是各個(gè)研究機(jī)構(gòu)之間分子標(biāo)記檢測(cè)數(shù)據(jù)共享性不夠,隨著分子標(biāo)記技術(shù)的普及,分子標(biāo)記被廣泛用于親本材料檢測(cè)評(píng)價(jià),但是由于缺乏一個(gè)數(shù)據(jù)共享平臺(tái),不同的科研單位之間存在重復(fù)性工作,造成了人力、物力和時(shí)間的大量浪費(fèi)。針對(duì)上述三個(gè)問(wèn)題,本研究開(kāi)展了以下工作:收集小麥上已經(jīng)發(fā)表的分子標(biāo)記并進(jìn)行驗(yàn)證,甄別可用于分子育種的可靠標(biāo)記;從骨干親本入手,通過(guò)分子標(biāo)記檢測(cè)逐步積累親本材料的基因型信息,并將分散在不同科研機(jī)構(gòu)的檢測(cè)數(shù)據(jù)整合到數(shù)據(jù)庫(kù)中,最終建成便于育種家查詢和使用的專業(yè)化分子標(biāo)記數(shù)據(jù)庫(kù);征集含有抗病、優(yōu)質(zhì)、高產(chǎn)等優(yōu)異基因的載體材料,通過(guò)分子標(biāo)記數(shù)據(jù)庫(kù),打開(kāi)獲取這些載體材料的信息渠道;結(jié)合本單位的分子診斷技術(shù)平臺(tái),為小麥育種工作者提供全方位的服務(wù)。

1材料與方法

1.1分子標(biāo)記收集與整理

本數(shù)據(jù)庫(kù)收集的分子標(biāo)記均與小麥性狀緊密連鎖或位于控制該性狀的基因內(nèi)部,主要包括2012年Liu等[13]和2016年Rasheed等[14]發(fā)表的文章,均來(lái)自公共資源。

將每一個(gè)小麥分子標(biāo)記按照標(biāo)記名稱、性狀種類、性狀名稱、基因位點(diǎn)名稱、上下游引物序列、退火溫度、等位基因名稱、預(yù)期片段大小(SNP標(biāo)記為等位基因堿基類型)、染色體臂位置、載體材料和陰性對(duì)照材料、標(biāo)記類型、參考文獻(xiàn)和備注等信息條目進(jìn)行整理,輸入Excel表格。對(duì)于原始文獻(xiàn)中有名稱的分子標(biāo)記,錄入原始名稱,沒(méi)有名稱的,以上下游引物名稱的組合錄入。備注中注明等位基因?qū)?yīng)的表型、連鎖標(biāo)記與目的基因的遺傳距離(是否功能標(biāo)記)、CAPS標(biāo)記對(duì)應(yīng)的限制性內(nèi)切酶名稱等其他信息。

1.2分子標(biāo)記載體材料征集與共享

小麥分子標(biāo)記在報(bào)道時(shí)均有對(duì)應(yīng)的載體材料,包括開(kāi)發(fā)該標(biāo)記時(shí)攜帶優(yōu)異等位基因的某一小麥品種或品系(原始載體材料)和被報(bào)道含有該等位基因的其他材料(檢出載體材料)。征集主要通過(guò)向文獻(xiàn)報(bào)道的作者、育種家、種質(zhì)資源庫(kù)等單位和個(gè)人索取、交換或購(gòu)買獲得。已征集到的載體材料及時(shí)對(duì)外公布,任何組織或個(gè)人均可與本單位聯(lián)系索取。

1.3分子標(biāo)記檢測(cè)和數(shù)據(jù)收集整理

分子標(biāo)記檢測(cè)一方面是為了驗(yàn)證分子標(biāo)記的可靠性和實(shí)用性;另一方面是對(duì)育種親本進(jìn)行系統(tǒng)全面的檢測(cè),形成基因型數(shù)據(jù)存入數(shù)據(jù)庫(kù)共享和利用。檢測(cè)方法均參照原始文獻(xiàn)報(bào)道進(jìn)行,基于PCR的SSR、STS等標(biāo)記采用艾本德MasterCycler96 PCR儀擴(kuò)增,瓊脂糖凝膠電泳分離,GelRed染色,伯樂(lè)GelDocXR凝膠成像儀觀察記錄。基于KASP的SNP或Indel標(biāo)記采用ABI7500熒光定量PCR儀檢測(cè)。

小麥分子標(biāo)記檢測(cè)結(jié)果主要有兩個(gè)來(lái)源:一是自行檢測(cè)的結(jié)果,二是公開(kāi)發(fā)表的檢測(cè)結(jié)果。將收集的小麥分子標(biāo)記檢測(cè)結(jié)果按照材料名稱、標(biāo)記名稱、檢測(cè)結(jié)果、參考文獻(xiàn)等進(jìn)行整理,輸入Excel表格。

1.4小麥分子標(biāo)記數(shù)據(jù)庫(kù)建立

為了方便后續(xù)增加分子標(biāo)記檢測(cè)結(jié)果數(shù)據(jù),將分子標(biāo)記檢測(cè)結(jié)果表拆分為育種親本表和檢測(cè)記錄表。將分子標(biāo)記信息表、育種親本表和檢測(cè)記錄表導(dǎo)入微軟的Access2010數(shù)據(jù)庫(kù)管理軟件。分子標(biāo)記信息和育種親本表分別以名稱作為主鍵,以育種親本表的主鍵作為檢測(cè)記錄表的外鍵,將分子標(biāo)記信息表和檢測(cè)記錄表以分子標(biāo)記名稱建立關(guān)系。用Access2010進(jìn)行數(shù)據(jù)庫(kù)管理。

2結(jié)果與分析

小麥分子標(biāo)記信息表收錄169個(gè)STS標(biāo)記,74個(gè)SNP標(biāo)記,44個(gè)SSR標(biāo)記,17個(gè)CAPS標(biāo)記和7個(gè)SCAR標(biāo)記,共計(jì)311個(gè)。其中與1R易位相關(guān)的分子標(biāo)記有7個(gè);與非生物脅迫相關(guān)的抗穗發(fā)芽分子標(biāo)記9個(gè),抗旱分子標(biāo)記3個(gè),抗鹽分子標(biāo)記2個(gè);與農(nóng)藝性狀相關(guān)的籽粒重量分子標(biāo)記19個(gè),低分蘗分子標(biāo)記1個(gè),光周期分子標(biāo)記13個(gè),矮稈分子標(biāo)記9個(gè),春化分子標(biāo)記23個(gè);與抗病相關(guān)的黃矮病分子標(biāo)記5個(gè),赤霉病分子標(biāo)記12個(gè),葉銹病分子標(biāo)記37個(gè),白粉病分子標(biāo)記23個(gè),斑枯病分子標(biāo)記2個(gè),稈銹病分子標(biāo)記29個(gè),條銹病分子標(biāo)記9個(gè),褐斑病分子標(biāo)記1個(gè),黃花葉病分子標(biāo)記2個(gè),線條花葉病分子標(biāo)記3個(gè);與加工品質(zhì)相關(guān)的高低分子量谷蛋白亞基分子標(biāo)記49個(gè),籽粒硬度分子標(biāo)記10個(gè),蛋白質(zhì)含量分子標(biāo)記3個(gè),脂肪氧化酶分子標(biāo)記4個(gè),過(guò)氧化物酶分子標(biāo)記3個(gè),多酚氧化酶分子標(biāo)記8個(gè),蠟質(zhì)分子標(biāo)記8個(gè),黃色素含量分子標(biāo)記17個(gè)。由于引物位置和分子標(biāo)記類型不同,部分基因位點(diǎn)有多個(gè)分子標(biāo)記,311個(gè)標(biāo)記共涉及基因位點(diǎn)將近130個(gè)(表1)。endprint

檢測(cè)記錄表收錄自行檢測(cè)的數(shù)據(jù)共涉及21個(gè)分子標(biāo)記,包括1R易位、高分子量谷蛋白亞基、籽粒硬度、多酚氧化酶、脂肪氧化酶、黃色素含量、春化和光周期基因位點(diǎn)。收錄的公開(kāi)發(fā)表檢測(cè)結(jié)果主要有矮稈[153]、抗病[154-157]、品質(zhì)[158]、春化和光周期[159]。檢測(cè)記錄共計(jì)19 006條。育種親本表收錄被檢測(cè)親本共計(jì)1 784份,主要為當(dāng)前和歷史主要栽培品種、高代品系等。

3討論與結(jié)論

小麥分子標(biāo)記數(shù)據(jù)庫(kù)建立之后,首先要對(duì)收集的非功能分子標(biāo)記在育種親本中的適用性進(jìn)行試驗(yàn)驗(yàn)證。因?yàn)檫@些分子標(biāo)記多是在目標(biāo)性狀差異極大的雙親群體中開(kāi)發(fā)而來(lái),而育種親本多為親緣關(guān)系近、遺傳基礎(chǔ)狹窄的育成品種或高代品系[160],分子標(biāo)記的多態(tài)性較低,再加上小麥三個(gè)亞基因組間相似度較高,PCR擴(kuò)增經(jīng)常相互干擾,所以已開(kāi)發(fā)的分子標(biāo)記有可能喪失多態(tài)性。通過(guò)與育種者和分子標(biāo)記開(kāi)發(fā)單位結(jié)合,通過(guò)檢測(cè)育種親本和載體材料,對(duì)已報(bào)道分子標(biāo)記的有效性進(jìn)行驗(yàn)證,可以確定分子標(biāo)記是否適用于某育種親本或育種群體。對(duì)于存在假陽(yáng)性結(jié)果的分子標(biāo)記,在沒(méi)有更好的分子標(biāo)記之前,仍可作為選擇參考。對(duì)于功能標(biāo)記,由于其位于基因內(nèi)部,檢測(cè)的位點(diǎn)是引起表型變異的原因,在開(kāi)發(fā)時(shí)對(duì)基因功能已有完整解析,對(duì)等位基因變異進(jìn)行了大量檢測(cè)[7,14],因此可以在不同材料、不同群體間通用,不需要再驗(yàn)證,是今后分子標(biāo)記開(kāi)發(fā)的方向。其次,要系統(tǒng)開(kāi)展育種親本的大規(guī)模分子標(biāo)記檢測(cè),以摸清育種親本的基因型組成,為親本組配提供參考。育種親本是優(yōu)良基因的載體,只有明確了育種親本含有的等位基因類型,才能利用分子標(biāo)記輔助選擇技術(shù)將其中的優(yōu)異等位基因快速回交轉(zhuǎn)育到新的品種(系)中。因此,充分了解親本的基因型組成,是進(jìn)行分子育種的關(guān)鍵。早期開(kāi)發(fā)的SSR等分子標(biāo)記需要在PCR反應(yīng)后進(jìn)行電泳分離、染色和帶型統(tǒng)計(jì),步驟較多,不利于大規(guī)模應(yīng)用和降低檢測(cè)成本。SNP標(biāo)記被稱為第三代分子標(biāo)記,其在基因組中數(shù)量多、分布廣、可實(shí)現(xiàn)大規(guī)模自動(dòng)化檢測(cè),是最具發(fā)展?jié)摿Φ姆肿訕?biāo)記[161]。SNP檢測(cè)平臺(tái)已開(kāi)發(fā)較多,英國(guó)LGC公司開(kāi)發(fā)的KASP平臺(tái)因其精度高、硬件要求低、成本低廉、檢測(cè)通量靈活[162],近年來(lái)被廣泛使用。開(kāi)發(fā)新的基于KASP平臺(tái)的SNP標(biāo)記和轉(zhuǎn)換已有的非SNP標(biāo)記,有利于分子標(biāo)記的規(guī)模化應(yīng)用。再次,隨著SNP芯片和測(cè)序技術(shù)的開(kāi)發(fā)利用,在基因型數(shù)據(jù)獲取容易的今天,表型數(shù)據(jù)的獲得成為基因功能研究的瓶頸。利用現(xiàn)有的研究資源,在不同的生態(tài)區(qū)建立抗旱、抗病、抗蟲(chóng)等不同的表型鑒定試驗(yàn)站,建立表型鑒定網(wǎng)絡(luò)平臺(tái)以獲取大量的表型數(shù)據(jù)將成為今后的建設(shè)重點(diǎn)。

小麥上已開(kāi)發(fā)的分子標(biāo)記常被用于檢測(cè)品種或高代品系的等位基因分布情況,真正用于育種的報(bào)道很少[6]。一方面,作為基因供體的分子標(biāo)記原始載體材料分別被保存在標(biāo)記的研發(fā)單位,真正需要這些優(yōu)異材料作為育種親本的育種家不能及時(shí)獲得這些資源。另一方面育種家往往沒(méi)有合適的分子標(biāo)記載體材料的獲取渠道,因?yàn)榭蒲腥藛T一般不愿共享載體材料[163],這也是本研究收集原始載體材料較少的原因之一。類似的情況還有不同的科研機(jī)構(gòu)都在利用公布的分子標(biāo)記對(duì)育種親本進(jìn)行檢測(cè)評(píng)價(jià),而相關(guān)文獻(xiàn)報(bào)道卻沒(méi)有公布檢測(cè)數(shù)據(jù),使得不同單位之間存在大量的重復(fù)性工作,造成了人力、物力和時(shí)間的大量浪費(fèi),因此小麥分子標(biāo)記數(shù)據(jù)庫(kù)建立后,需要逐步將分散在不同科研機(jī)構(gòu)的骨干親本的基因型、表型數(shù)據(jù)整合到數(shù)據(jù)庫(kù)中,參考國(guó)家水稻數(shù)據(jù)中心網(wǎng)站,開(kāi)發(fā)小麥分子育種網(wǎng)站。本研究廣泛征集含有抗病、優(yōu)質(zhì)、高產(chǎn)等優(yōu)異基因的小麥供體育種親本及其分子信息構(gòu)建綜合性數(shù)據(jù)庫(kù),為小麥分子育種共享平臺(tái)提供基礎(chǔ)數(shù)據(jù)。早在2001年Sanford等[164]提出成立美國(guó)基因型鑒定中心,現(xiàn)在隸屬于美國(guó)農(nóng)業(yè)部分散在四個(gè)區(qū)域的基因型鑒定中心每年都為全美國(guó)的育種家提供100多個(gè)分子標(biāo)記的檢測(cè)服務(wù),極大地促進(jìn)了美國(guó)分子育種的發(fā)展。小麥分子數(shù)據(jù)庫(kù)的建立應(yīng)以育種應(yīng)用為目標(biāo),從資源基因型組成、優(yōu)異基因獲取、分子標(biāo)記跟蹤檢測(cè)服務(wù)幾個(gè)方面,為育種者提供全方位的服務(wù)。上游研發(fā)工作主要進(jìn)行新基因的克隆和新標(biāo)記的開(kāi)發(fā),研發(fā)出來(lái)的基因和標(biāo)記將無(wú)償提供給中游的分子診斷中心,為下游的育種單位提供基因型診斷服務(wù),加速高產(chǎn)、優(yōu)質(zhì)、抗逆小麥新種質(zhì)和新品種的選育進(jìn)程。促使育種工作盡快完成從常規(guī)到因水平的提升與突破,對(duì)于推動(dòng)我國(guó)小麥商業(yè)化育種的快速發(fā)展、增強(qiáng)種業(yè)發(fā)展后勁和國(guó)際競(jìng)爭(zhēng)力具有非常重要的意義。參考文獻(xiàn):

[1]Gupta P K, Kumar J, Mir R R, et al. Marker-assisted selection as a component of conventional plant breeding [M]. Hoboken, N J, USA: John Wiley & Sons, Inc., 2010:145-217.

[2]劉志文, 傅廷棟, 劉雪平, 等. 作物分子標(biāo)記輔助選擇的研究進(jìn)展、影響因素及其發(fā)展策略[J]. 植物學(xué)通報(bào), 2005, 22(Z1):82-90.

[3]Staub J E, Serquen F C, Gupta M. Genetic markers, map construction, and their application in plant breeding [J]. HortScience, 1996, 31(5):729-741.

[4]Paux E, Sourdille P, Salse J, et al. A physical map of the 1-gigabase bread wheat chromosome 3B [J]. Science, 2008, 322(5898):101-104.

[5]Chao S, Sharp P J, Worland A J, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes [J]. Theoretical and Applied Genetics, 1989, 78(4):495-504.endprint

[6]Gupta P K, Langridge P, Mir R R. Marker-assisted wheat breeding: present status and future possibilities [J]. Molecular Breeding, 2010, 26(2):145-161.

[7]Bagge M, Xia X, Lubberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10(2):211-216.

[8]Ma L, Li T, Hao C, et al. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield [J]. Plant Biotechnology Journal, 2016, 14(5):1269-1280.

[9]何中虎, 夏先春, 陳新民, 等. 中國(guó)小麥育種進(jìn)展與展望[J]. 作物學(xué)報(bào), 2011, 37(2):202-215.

[10]Andersen J R, Lübberstedt T. Functional markers in plants [J]. Trends in Plant Science, 2003, 8(11):554-560.

[11]Marcussen T, Sandve S R, Heier L, et al. Ancient hybridizations among the ancestral genomes of bread wheat [J]. Science, 2014, 345(6194):1250092.

[12]Consortium I W G S. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome [J]. Science, 2014, 345(6194):1251788.

[13]Liu Y, He Z, Appels R, et al. Functional markers in wheat: current status and future prospects [J]. Theoretical and Applied Genetics, 2012, 125(1):1-10.

[14]Rasheed A, Wen W, Gao F, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat [J]. Theoretical and Applied Genetics, 2016, 129(10):1843-1860.

[15]Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations [J]. Plant Breeding, 2006, 125:302-304.

[16]De Froidmont D. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR [J]. Journal of Cereal Science, 1998, 27:229-232.

[17]Liu C, Yang Z J, Li G R, et al. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background [J]. Euphytica, 2008, 159:249-258.

[18]Kofler R, Bartos J, Gong L, et al. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1 [J]. Theoretical and Applied Genetics, 2008, 117(6):915-926.

[19]Nakamura S, Abe F, Kawahigashi H, et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination [J]. Plant Cell, 2011, 23(9):3215-3229.

[20]Yang Y, Zhao X L, Xia L Q, et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats [J]. Theoretical and Applied Genetics, 2007, 115(7):971-980.endprint

[21]Zhang Y, Miao X, Xia X, et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker [J]. Theoretical and Applied Genetics, 2014, 127(4):855-866.

[22]Wei B, Jing R, Wang C, et al. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs [J]. Molecular Breeding, 2009, 23(1):13-22.

[23]Zhang J, Xu Y, Chen W, et al. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought [J]. New Phytologist, 2015, 205(1):293-305.

[24]Byrt C S, Platten J D, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 [J]. Plant Physiology, 2007,143(4):1918-1928.

[25]Huang S, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat [J]. Plant Physiology, 2006, 142(4):1718-1727.

[26]James R A, Blake C, Byrt C S, et al. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions [J]. Journal of Experimental Botany, 2011, 62(8):2939-2947.

[27]Jaiswal V, Gahlaut V, Mathur S, et al. Identification of novel SNP in promoter sequence of TaGW2-6A associated with grain weight and other agronomic traits in wheat (Triticum aestivum L.) [J]. PLoS One, 2015, 10(6):e0129400.

[28]Jiang Q, Hou J, Hao C, et al. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits [J]. Functional & Integrative Genomics, 2011, 11(1):49-61.

[29]Jiang Y, Jiang Q, Hao C, et al. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis [J]. Theoretical and Applied Genetics, 2015, 128(1):131-143.

[30]Lu J, Chang C, Zhang H P, et al. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat [J]. PLoS One, 2015, 10(12):e0144765.

[31]Ma D, Yan J, He Z, et al. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers [J]. Molecular Breeding, 2012, 29(1):43-52.

[32]Su Z, Hao C, Wang L, et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 122(1):211-223.endprint

[33]Yue A, Li A, Mao X, et al. Identification and development of a functional marker from 6-SFT-A2 associated with grain weight in wheat [J]. Molecular Breeding, 2015, 35(2):1-10.

[34]Zhang Y, Liu J, Xia X, et al. TaGS - D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat [J]. Molecular Breeding, 2014, 34(3):1097-1107.

[35]Hanif M, Gao F, Liu J, et al. TaTGW6 - A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat [J]. Molecular Breeding, 2016, 36(1):1-8.

[36]Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S [J]. Theoretical and Applied Genetics, 2004, 109(6):1303-1310.

[37]Beales J, Turner A, Griffiths S, et al. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2007, 115(5):721-733.

[38]Nishida H, Yoshida T, Kawakami K, et al. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time [J]. Molecular Breeding, 2013, 31(1):27-37.

[39]Wilhelm E P, Turner A S, Laurie D A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.) [J]. Theoretical and Applied Genetics, 2009, 118(2):285-294.

[40]Ellis H, Spielmeyer W, Gale R, et al. “Perfect” markers for the Rht-B1b and Rht-B1b dwarfing genes in wheat [J]. Theoretical and Applied Genetics, 2002, 105(6/7):1038-1042.

[41]Korzun V, Rder M S, Ganal M W, et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.) [J]. Theoretical & Applied Genetics, 1998, 96(8):1104-1109.

[42]Chen Y, Carver B F, Wang S, et al. Genetic regulation of developmental phases in winter wheat [J]. Molecular Breeding, 2010, 26(4):573-582.

[43]Chen Y, Carver B F, Wang S, et al. Genetic loci associated with stem elongation and winter dormancy release in wheat [J]. Theoretical and Applied Genetics, 2009, 118(5):881-889.

[44]Chu C G, Tan C T, Yu G T, et al. A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.) [J]. G3: Genes, Genomes, Genetics, 2011, 1(7):637-645.endprint

[45]Díaz A, Zikhali M, Turner A S, et al. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum) [J]. PLoS One, 2012, 7(3):e33234.

[46]Fu D, Szucs P, Yan L, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat [J]. Molecular Genetics and Genomics, 2005, 273(1):54-65.

[47]Milec Z, Tomková L, Sumíková T, et al. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.) [J]. Molecular Breeding, 2012, 30(1):1-7.

[48]Yan L, Fu D, Li C, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19581-19586.

[49]Yan L, Helguera M, Kato K, et al. Allelic variation at the VRN-1 promoter region in polyploid wheat [J]. Theoretical and Applied Genetics, 2004, 109(8):1677-1686.

[50]Kausar S, Hameed S, Haque I U, et al. Molecular confirmation of Bdv2 gene in wheat germplasm and its field based assessment for resistance against barely yellow dwarf viruses [J]. Supervision Test & Cost of Construction, 2015, 3(1):16-22.

[51]Kong L, Anderson J M, Ohm H W. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker [J]. Plant Breeding, 2009, 128(6):591-597.

[52]Stoutjesdijk P, Kammholz S J, Kleven S, et al. PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of Barley yellow dwarf virus resistance in wheat [J]. Crop & Pasture Science, 2001, 52(12):1383-1388.

[53]Zhang Z, Xu J, Xu Q, et al. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection [J]. Theoretical and Applied Genetics, 2004, 109(2):433-439.

[54]Anderson J A, Stack R W, Liu S, et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations [J]. Theoretical and Applied Genetics, 2001, 102:1164-1168.

[55]Bernardo A N, Ma H, Zhang D, et al. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance [J]. Molecular Breeding, 2012, 29(2):477-488.

[56]Cuthbert P A, Somers D J, Brule-Babel A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2007, 114(3):429-437.endprint

[57]Liu S, Pumphrey M O, Gill B S, et al. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat[J]. Cereal Research Communications, 2008, 36:195-201.

[58]Qi L L, Pumphrey M O, Friebe B, et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat [J]. Theoretical and Applied Genetics, 2008, 117(7):1155-1166.

[59]Xue S, Li G, Jia H, et al. Fine mapping Fhb4 , a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2010, 121(1):147-156.

[60]Xue S, Xu F, Tang M, et al. Precise mapping Fhb5 , a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 123(6):1055-1063.

[61]Zhu X, Zhong S, Chao S, et al. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat [J]. Theoretical and Applied Genetics, 2016, 129(1):31-43.

[62]Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47 [J]. Theoretical and Applied Genetics, 2000, 101(4):625-631.

[63]Huang L, Gill B S. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat [J]. Theoretical and Applied Genetics, 2001, 103(6):1007-1013.

[64]Prins R, Groenewald J Z, Marais G F, et al. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat [J]. Theoretical and Applied Genetics, 2001, 103(4):618-624.

[65]Helguera M, Khan I A, Kolmer J, et al. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines [J]. Crop Science, 2003, 43(5):1839-1847.

[66]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 109(6):1105-1114.

[67]Helguera M, Vanzetti L, Soria M, et al. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines [J]. Crop Science, 2005, 45(2):728-734.

[68]Lagudah E S, Mcfadden H, Singh R P, et al. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat [J]. Theoretical and Applied Genetics, 2006, 114(1):21-30.endprint

[69]Rosewarne G M, Singh R P, Huerta-Espino J, et al. Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29 [J]. Theoretical and Applied Genetics, 2006, 112(3):500-508.

[70]Gennaro A, Koebner R M, Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat [J]. Functional & Integrative Genomics, 2009, 9(3):325-334.

[71]Kuraparthy V, Sood S, See D R, et al. Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats[J]. Crop Science, 2009, 49(1):120-126.

[72]Lagudah E S, Krattinger S G, Herrera-Foessel S, et al. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens [J]. Theoretical & Applied Genetics, 2009, 119(5):889-898.

[73]Sun X, Bai G, Carver B F. Molecular markers for wheat leaf rust resistance gene Lr41 [J]. Molecular Breeding, 2009, 23(2):311-321.

[74]Fu Y B, Peterson G W, Mccallum B D, et al. Population-based resequencing analysis of improved wheat germplasm at wheat leaf rust resistance locus Lr21 [J]. Theoretical and Applied Genetics, 2010, 121(2):271-281.

[75]Sun X C, Bai G H, Carver B F, et al. Molecular mapping of wheat leaf rust resistance gene Lr42 [J]. Crop Science, 2010, 50(1):59-66.

[76]Herrera-Foessel S A, Singh R P, Huerta-Espino J, et al. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat [J]. Theoretical and Applied Genetics, 2012, 124(8):1475-1486.

[77]Moore J W, Herrera-Foessel S, Lan C, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat [J]. Nature Genetics, 2015, 47(12):1494-1498.

[78]Pirseyedi S M, Somo M, Poudel R S, et al. Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat [J]. Theoretical and Applied Genetics, 2015, 128(12):2403-2414.

[79]Cenci A, Tanzarella O, Ceoioni C E, et al. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat [J]. Theoretical & Applied Genetics, 1999, 98(3/4):448-454.

[80]Liu Z, Sun Q, Ni Z, et al. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat [J]. Plant Breeding, 1999, 118(3):215-219.

[81]Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat [J]. Theoretical and Applied Genetics, 2004, 109(1):140-145.endprint

猜你喜歡
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
兩種新的非確定數(shù)據(jù)庫(kù)上的Top-K查詢
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
數(shù)據(jù)庫(kù)
主站蜘蛛池模板: 欧美成人精品一区二区| 高清大学生毛片一级| 欧洲一区二区三区无码| 免费一级毛片在线观看| 中文字幕首页系列人妻| 国产成人精品一区二区| 亚洲成人在线网| 久热99这里只有精品视频6| 538国产视频| 亚洲久悠悠色悠在线播放| a毛片基地免费大全| 欧美特黄一级大黄录像| 久久狠狠色噜噜狠狠狠狠97视色 | 国产精品hd在线播放| 在线观看国产精美视频| 国产美女在线观看| 欧美国产日韩在线| 亚洲欧美成人网| 秘书高跟黑色丝袜国产91在线| 国产精品亚洲精品爽爽| 熟妇人妻无乱码中文字幕真矢织江| 免费看的一级毛片| 中文字幕无码电影| 日韩国产高清无码| 都市激情亚洲综合久久| 在线观看国产黄色| 中文精品久久久久国产网址| 午夜色综合| 毛片久久网站小视频| 亚洲国产精品日韩专区AV| 韩国v欧美v亚洲v日本v| 成人年鲁鲁在线观看视频| 国产精品女熟高潮视频| a级毛片免费网站| 女同国产精品一区二区| 免费Aⅴ片在线观看蜜芽Tⅴ| 亚洲精品图区| 欧美成人午夜在线全部免费| 免费AV在线播放观看18禁强制| 久久综合AV免费观看| 日本日韩欧美| 国产精品55夜色66夜色| 国产精品视频观看裸模| 小说 亚洲 无码 精品| 国产精品美人久久久久久AV| 国产亚洲美日韩AV中文字幕无码成人 | 成人综合在线观看| 国产v精品成人免费视频71pao| 99re在线视频观看| 亚洲最新地址| 97在线视频免费观看| 99热亚洲精品6码| 露脸一二三区国语对白| 国产精品一区在线麻豆| 9啪在线视频| 久久影院一区二区h| 久久频这里精品99香蕉久网址| 狠狠干欧美| 综合久久五月天| 亚洲欧洲国产成人综合不卡| 九九九国产| 国产91av在线| 免费xxxxx在线观看网站| 无码一区二区三区视频在线播放| 亚洲 欧美 偷自乱 图片| 亚洲精品黄| 欧美成人第一页| 欧美亚洲国产精品第一页| 国产内射在线观看| 亚洲一区二区三区国产精华液| 九色视频最新网址| 亚洲美女一级毛片| 沈阳少妇高潮在线| 免费一级成人毛片| 国产人在线成免费视频| 91精品日韩人妻无码久久| 亚洲成人免费看| 亚洲三级电影在线播放| 国产爽妇精品| 中文字幕精品一区二区三区视频 | 1769国产精品视频免费观看| 精品無碼一區在線觀看 |