陳 嘯,孔丹丹,王紅英,方 鵬
?
基于本構模型的顆粒飼料成型特性研究
陳 嘯,孔丹丹,王紅英※,方 鵬
(中國農業大學工學院,農業部國家農產品加工技術裝備研發分中心,北京 100083)
為研究飼料原料擠壓成型特性,構建了非線性黏彈塑性顆粒飼料成型本構模型,針對主要飼料原料小麥,通過分析成型試驗因素對其本構模型系數及其表征的流變學特性的影響,研究物料特性、加工參數等對小麥原料成型特性的影響規律,并分析了模型系數與顆粒成型質量的相關性關系。黏彈塑性本構模型由牛頓黏滯體(Newton viscous dashpot element)、應變硬化彈簧元件(strain hardening spring element)和庫倫摩擦元件(Coulomb friction element)構成,基于小麥原料的實際成型試驗完成模型構建;模型驗證結果顯示:數值結果中各應力區間模型決定系數R在0.99以上,模型值與試驗值較為吻合,相對誤差總平均值為3.378%,并通過χ檢驗進一步證明模型有效性;應用本構模型對小麥原料成型特性的分析結果顯示,表征其流變學特性的模型系數表現出明顯的應力函數規律,黏性系數絕對值隨著擠壓過程的進行逐漸減小,彈性模量值逐漸增大,集成塑性系數值則表現為先增后降,而各成型試驗因素對模型系數產生了顯著規律性影響,與宏觀試驗現象比較吻合;通過Pearson相關性分析可知顆粒成型密度、顆粒成型率、顆粒成型硬度等成型質量指標分別與黏性系數、塑性模量與彈性模量間達到了最高的相關系數,數值皆在0.80以上且為極顯著相關性水平(<0.001),為基于本構模型對顆粒成型質量進行分析和控制提供依據。研究結果為顆粒飼料擠壓成型特性研究提供了一種新方法和新角度,也為顆粒飼料的高效低耗生產和產品質量的改善提供基礎數據和理論參考。
黏彈性;擠壓;模型;飼料原料;顆粒成型特性;材料流變學
顆粒飼料生產過程中,飼料原料在粉碎、混合、調質后進行的擠壓成型加工是一個重要工序。物料顆粒粒子在這一過程中持續受壓并相互重疊搭接,顆粒體系由松散態逐漸固化黏結成型,表現出力學特性及粘彈塑性等成型特性的規律性變化;而顆粒飼料產品易產生裂紋,在降低生產效率的同時導致產品質量不穩定,這往往是因為對顆粒成型特性認識不夠深入。因此,從材料流變學角度研究顆粒飼料成型特性,對飼料原料在擠壓成型過程中表現出的力學特性及彈塑性、黏性[1]等流變特性進行探討是極有必要的,對于分析顆粒飼料成型規律、優化成型工藝與設備具有理論指導意義。
目前,基于農業物料流變學對擠壓成型特性的研究多集中在生物質領域:相關學者針對秸稈等不同生物質原料特性和應用目的及不同流變理論,構建了熱黏塑性本構模型[2]、黏彈性本構模型[3]、Burgers本構模型[4]等進行研究;鄭曉等則針對芝麻[5]、菜籽[6]等物料的擠壓壓榨過程,采用理論經驗混合方法構建了蠕變黏塑性本構模型;盧立新等[7]提出表征果實非損傷條件下跌落沖擊力學特征的非線性黏彈性本構模型,可確定類似果實動態流變特征參數;國外相關領域中,相關學者分別針對高纖維生物質原料[8]、花旗松[9]、小麥秸稈[10]等基于流變模型進行了質量指標預測、流變參數變化規律和應力松弛特性等的研究。目前顆粒飼料成型研究多集中在宏觀加工參數的影響及加工工藝優化等方面,而應用流變學方法研究顆粒飼料成型特性則尚未見報道,且與上述生物質領域相關研究相比,一是飼料原料與生物質物料特性差別大[11-12];二是由于生物質成型顆粒應用目的,其研究多集中在應力松弛、蠕變,與飼料顆粒成型特性的研究重點有所不同;三是對于本構模型與加工過程、顆粒質量的規律性研究較少,未充分體現模型應用價值。而根據目前顆粒飼料原料應用現狀[13-14],小麥替代玉米作為性價比更高的能量飼料來源具有較好的應用前景,而其在顆粒飼料加工過程中表現出的成型特性則有待探究。
由此,本文在分析顆粒飼料成型過程特點的基礎上,構建了表征成型過程流變學特性的非線性黏彈塑性本構模型;以小麥這一主要飼料原料為研究對象,基于本構模型數值結果,分析其在擠壓成型過程中表現出的黏彈性、塑性等流變學特征,進而研究物料特性、加工參數等試驗因素對物料流變學特征及成型特性的影響規律;并由此分析本構模型各系數與成型顆粒質量的相關關系,為顆粒飼料擠壓成型特性研究提供一種新方法,也為顆粒飼料的高效低耗生產和產品質量的改善提供理論參考。
試驗對象小麥采集自北京首農畜牧發展有限公司飼料分公司,品種為德高1號,產地河南,初始含水率13%左右。
根據顆粒飼料成型加工過程主要影響因素[15],選取擠壓成型試驗因素及試驗水平如下:以物料含水率(12%、15%、18%)、顆粒粒度(粉碎過Φ1.5、Φ2.0、Φ2.5 mm篩片孔徑)作為物料參數,成型溫度(60、75、80、85 ℃)、擠壓載荷(2、3、4 kN)作為成型加工參數,設計為完全隨機化4因素全面試驗,重復試驗3次[16]。
針對擠壓成型后的顆粒產品裂紋、質量變化等問題,使用顆粒成型密度、顆粒成型率及顆粒成型硬度等質量指標進行分析研究;其中成型密度、成型率計算方法見式(1)、(2),成型硬度使用谷物硬度計測定(GWJ-1,托普儀器有限公司)。

式中為顆粒成型密度,g/cm3,為物料質量,g;為模孔內半徑,cm;為物料初始高度,cm;為壓桿位移,cm。

式中為顆粒成型率,%,m為成型顆粒質量,g。
使用試驗用小型粉碎機(JFSD-100,上海滬粵明科學儀器有限公司)按試驗安排對物料進行粉碎;待物料降至室溫(25 ℃)時,測定粉碎物初始含水率[17],進而由初始含水率進行計算并對樣品自然晾干或賦水達到目標含水率,并測定粉碎樣品顆粒粒度情況[18](表1);封存制備好的樣品于密封袋中并置于4 ℃試驗用冷藏柜中保存。

表1 不同篩片孔徑、含水率物料顆粒粒度
結合相關文獻研究方法[19-22],使用自行設計制作的擠壓成型單孔閉式試驗臺完成擠壓成型試驗,通過設計加工公差使壓桿直徑尺寸略小于模孔直徑,從而形成間隙便于排出模孔內空氣從而降低對試驗的影響;試驗臺搭載電子萬能試驗機(RGM 100 kN,深圳瑞格爾儀器有限公司)采集加載過程中的壓力、時間、位移數據,通過陶瓷加熱線圈和加載PID程序算法的智能溫控器實現溫度控制;根據物料密度范圍和模孔容積將試驗用物料質量定為15 g,通過預試驗及參考文獻[21-22],確定預熱保溫時間、壓桿擠壓速度分別為120 s和30 mm/min;試驗時向模孔中緩慢均勻填料,將模孔及內容物預熱至目標溫度并進行保溫后,壓桿對物料進行擠壓;試驗完成后通過卸料擋板將成型顆粒從模孔中完整取出并測定各項質量指標;擠壓成型試驗臺示意圖如圖1。

圖1 擠壓成型試驗臺示意圖
本構模型(constitutive model)是表征和描述材料受載荷作用時表現的變形行為和流變特性[23]的數學物理模型[24],可綜合反映材料宏觀力學性能和響應機理,并體現物料在工程應用過程中的本質屬性。
在顆粒擠壓成型過程的初始階段,粉碎物粒子在慣性力的作用下得到重新排列[25],當其相對位置不再發生顯著變化時,粒子間連接初步建立[26],之后的物料成型規律可認為由其本身黏彈塑性產生,物料亦可視為連續介質[2, 27]。由此,將擠壓成型過程分為慣性變形階段和黏彈塑性成型階段[28],并采用應力-時間梯度法進行劃分,將應力梯度值保持為正值的起點作為黏彈塑性成型階段的開始(圖2);由于慣性變形階段中原料粒子松散且多處于無規則運動,物料成型特性受其初始狀態、間隙氣體等諸多隨機因素影響而較不穩定,故本文主要在發生有效變形的黏彈塑性成型階段進行本構模型的構建。
作為典型生物材料,飼料原料在擠壓成型過程中表現出諸多復雜特性,如非線性、流變性、率相關性等[25],其黏彈塑性變形不僅與現時載荷有關,也與載荷作用時間有關[29],因此使用簡單的線彈性體系進行表征是不準確的;而從連續介質力學理論出發,使用針對非線性材料、以流變學理論模型和試驗數據為基礎的唯象法[30-31]對本構模型進行構建,由此應用高分子物理學中黏彈塑性等概念,給出非線性流體應力、應變及應變速率間的關系,并以本構方程中的模型系數如黏度、模量等表征材料的特性,可在探討系數物理意義的同時認識成型過程的本質規律[31-32]。

注:篩片孔徑2.0 mm,成型溫度80 ℃,擠壓載荷3 kN,物料含水率15%。
2.2.1 流變特性與流變元件
傳統彈塑性理論主要基于區分彈塑性的屈服理論,而飼料原料成型過程中,黏彈塑性變形是同時發生的,各階段材料特性的不同使某種流變特性占主導地位[33];采用應變強化彈簧元件(strain hardening spring element)進行彈塑性表征,將彈性變形與塑性變形進行耦合,使用冪強化方式描述塑性變形的非線性特性,得到彈塑性本構方程為:

式中為該元件中相應應變響應,無量綱,σ1為彈塑性應力,MPa;為彈性模量(elastic modulus, MPa),為塑性模量(plastic modulus, MPa),為應變硬化指數(strain hardening exponent, 無量綱)。其中,彈性模量在本文的應用中代表物料受力壓縮產生變形的難易程度,該系數的增加說明材料當前條件下可壓縮變形量的降低,剛度增加,可以表征顆粒混合物在擠壓成型過程中表現出的可壓縮性的強弱。

依據近似本構關系[34](式中σ、ε為相對應應力,MPa及應變響應,無量綱),將塑性模量和應變強化指數寫為集成塑性系數(combined plastic exponent, 無量綱):1/n,其越高表明發生的塑性應變程度越高。而從材料學角度看,塑性應變的提高表明撤去外力后可保持的變形量的提高,這對顆粒飼料成型質量控制有積極的指導意義。
與彈塑性相比,物料的黏性具有較為明顯的率相關性和時間依賴性,由此將表征黏性的牛頓黏滯體(Newton viscous dashpot element)中的應變響應修正為其對加載時間的變化率,其本構方程為:

式中σ2為黏性應力,MPa;為黏性系數(viscous coefficient, MPa·s),為應力作用時間,s。本文中的黏性主要表征的是顆粒飼料成型過程中粒子間相互聯結、黏合的能力,反映當前狀態下材料受外力作用產生變形而不發生顯著破壞的性能。
結合單孔成型試驗條件和庫倫摩擦定律可知,由物料與模孔壁面摩擦產生的剪切應力應為物料壁面摩擦系數、徑向應力轉換系數和軸向作用力的乘積,則表征摩擦特性的庫倫摩擦元件(Coulomb friction element)本構方程為:

式中σ3為摩擦損耗應力,MPa;σ為摩擦損耗因子(frictional loss factor, MPa)。摩擦損耗因子可反映在擠壓過程中物料的能量耗散特性,其來源主要包括顆粒間或顆粒與模孔壁面的摩擦和黏結等。
2.2.2 模型整體結構
與高分子、金屬或陶瓷材料的流變學特點相比,飼料原料作為生物材料,其差異性主要表現為受壓過程中黏彈塑性應變響應的模糊性[35],故傳統流變學模型并不適用于顆粒飼料擠壓成型過程,本文流變元件的并聯式耦合方式(圖3)可適應這一特點,則飼料原料非線性黏彈塑性本構方程為:

式中為黏彈塑性本構模型總應力,MPa。
為分析本構模型表征的隨擠壓成型過程變化的飼料原料流變學特性,將黏彈塑性成型試驗過程按應力加載路徑依次均分為5個應力區間,基于各應力區間的成型試驗數據求取黏彈塑性本構模型數值結果;應用軟件Matlab 2014a實現應力-時間梯度法劃分成型階段,以及SPSS 20.0非線性回歸模塊獲得本構模型數值結果,數值分析方法采用序列二次編程法和Levenberg-Marquardt法,其平方和收斂性、參數收斂性皆設置為10-8;數據分析與作圖等使用SPSS 20.0、Microsoft Excel 2010和OriginPro 9.1等軟件完成。

圖3 非線性黏彈塑性本構模型元件圖
分析非線性黏彈塑性本構模型數值結果(表2),可知各黏彈塑性成型區間中模型決定系數R都在0.99以上;圖4顯示模型值與試驗值吻合度較高,應力區間1-5中模型值與試驗值的平均相對誤差[36]分別為3.883%、1.798%、2.992%、1.496%和6.721%,總平均值為3.378%;根據式(8)進一步計算各區間內數據的χ值,依次為0.011、5.547、0.280、8.921和35.962,均遠小于自由度為130、顯著性為0.001時χ標準值(χ0.001(130)=184.37),綜合以上判據說明本文構建的黏彈塑性本構模型精度較高,可較好地表征小麥原料成型過程中表現出的黏彈塑性等材料流變特性,由此可對其成型特性展開研究。

式中V為對應應力區間中模型值,V為相應試驗值,為相應應力區間內數據數量。
由表2數據可以看出,隨著擠壓過程的進行,黏彈塑性本構模型系數及其表征的小麥原料成型流變特性呈規律性變化,表現出明顯的應力函數特征:彈性模量隨應力的增加而增大,說明物料的變形性能隨擠壓的進行逐漸減弱,物料整體壓縮性逐漸下降至成型終點,而成型物料材料剛度則顯著上升;耦合塑性模量和應變強化指數得到的集成塑性指數首先呈增大趨勢,說明隨著擠壓應力的增高材料可保持的塑性變形量逐漸升高,而在高應力區間中出現了突降的現象;黏性系數絕對值逐漸增大說明物料顆粒間的黏結力隨著擠壓過程的進行逐漸增強,粒子間連接鍵逐步加固,而其為負值主要因為在黏性特性產生應變響應的過程中常伴有能量耗散的現象。

注:為降低前一應力區間的影響,將各區間應力值、應變響應值減去該區間初始值后使用;圖中Vtest-1、Vmodel-1至Vtest-5、Vmodel-5分別代表隨擠壓過程進行,依次應力區間中的試驗值、模型值。
為分析加工參數、物料特性參數等對小麥原料成型過程中表現出的流變學特性的影響[37],從而研究其成型特性規律,本節選取不同試驗條件組合,調整目標因素水平對比研究其對本構模型參數的影響;此時其他試驗因素水平相應固定為物料含水率15%,粉碎篩片孔徑2.0 mm,成型溫度80 ℃,擠壓載荷3 kN。

表2 小麥物料擠壓成型黏彈塑性本構模型數值結果
注:表中為小麥物料在試驗條件為物料含水率15%、粉碎篩片孔徑Φ2.0 mm、成型溫度80 ℃、擠壓載荷3 kN下求得;使用Duncan法進行多重比較,同列肩標上的不同小寫字母表示組間差異顯著(<0.05)。
Note: The data of these numerical results are from trail of moisture content is 15%, mesh size is 2.0 mm, forming temperature is 80 ℃, compression load is 3 kN; and these results are compared by Duncan’s multiple comparisons, different letters on shoulder indicate significant difference among groups (<0.05)
3.2.1 彈性模量
由圖5可見,隨著應力的增大,不同成型溫度下的小麥物料彈性模量值差異顯著增加,且在高溫區段溫度的升高會降低彈性模量,這說明在高溫引入的熱量作用下成型過程中顆粒粒子運動加劇,提高小麥原料受力壓縮后產生的變形量,并在一定程度上降低物料剛度。隨著物料由軟橡膠態(典型彈性模量值3.4 MPa)[38]向硬橡膠態轉化,小麥物料含水率的升高降低了其在擠壓過程中的彈性模量,或因水分作為飼料原料成型時的重要軟化劑,其含量的增加可以改善材料可壓縮性和變形程度[39]。根據粉碎樣品顆粒粒度試驗數據(表1)可知,隨著篩片孔徑的降低,顆粒粒度隨之下降。由圖線可知隨著擠壓過程的進行,低顆粒粒度物料彈性模量處于較低水平。而隨著擠壓額定載荷的逐漸升高,小麥物料的彈性模量依次增高,表現出外力對物料成型可壓縮性的突出影響。

注:其他試驗因素水平為:圖a,物料含水率15%,篩片孔徑2.0 mm,擠壓載荷3 kN;圖b,篩片孔徑2.0 mm,成型溫度80 ℃,擠壓載荷3 kN;圖c,物料含水率15%,篩片孔徑2.0 mm,成型溫度80 ℃;圖d,物料含水率15%,成型溫度80 ℃,擠壓載荷3 kN。
3.2.2 集成塑性系數
圖6顯示,含水率為15%、18%的小麥物料在擠壓成型過程中呈現相似的高水平集成塑性系數值,說明物料含水率的升高可以引起較大的塑性應變,表現為當前狀態下撤出外界應力后,材料可保持的變形量升高,體現出物料含水率對成型過程的積極作用[40]。較高的擠壓載荷(4 kN)同樣顯著增大了集成塑性系數(<0.05),而中低水平時該系數值則較為接近,且顆粒粒度越小的物料具有的集成塑性系數值越大,說明提高擠壓載荷和降低顆粒粒度可提高擠壓成型殘留變形量。同時,在高溫高應力區間中,成型溫度對集成塑性系數影響規律表現為正向趨勢。

注:其他試驗因素水平為:圖a,篩片孔徑2.0 mm,成型溫度80 ℃,擠壓載荷3 kN;圖b,物料含水率15%,篩片孔徑2.0 mm,成型溫度80 ℃;圖c,物料含水率15%,篩片孔徑2.0 mm,擠壓載荷3 kN;圖d,物料含水率15%,成型溫度80 ℃,擠壓載荷3 kN。
3.2.3 黏性系數
圖7顯示,隨著顆粒粒度的降低,小麥物料黏性系數絕對值逐漸增大,表現出顆粒粒子間結合力的顯著提高,原因或為顆粒物粒徑的減小增大了粒子間接觸面積,使其能夠更充分地進行水熱交換反應以建立更為牢固的連接鍵[21]。成型溫度對黏性系數絕對值的正向影響規律表明,更高的熱量在軟化顆粒粒子的同時,可以通過達到淀粉的玻璃化轉變溫度,激活物料中蛋白質等黏結劑作用等過程,促進粒子間的相互作用,顯著提高物料顆粒的結合能力,因此成型顆粒能夠更好地抵抗外力的破壞作用[41]。中高擠壓載荷下的黏性系數絕對值相對處于較高水平,說明載荷的增加有利于物料黏性特性的發揮。而隨著擠壓過程的進行,含水率越高的小麥物料黏性系數絕對值反而越小,這說明過高含量的水分造成的顆粒間滑移會阻礙其結合作用。
3.2.4 摩擦損耗因子
由圖8各圖線變化趨勢可以看出,試驗因素對摩擦損耗因子的影響規律性并不明顯,該值在成型過程中處于正負波動的狀態,原因或為粉狀小麥物料受載壓縮過程中不斷膨脹反彈的間斷性變化[42];而其數值數量級與擠壓應力、彈塑性模量等相比較小,表明在本文試驗條件下,因顆粒間及顆粒與壁面摩擦產生的能量耗散現象并不顯著。

注:其他試驗因素水平為:圖a,物料含水率15%,成型溫度80 ℃,擠壓載荷3 kN;圖b,物料含水率15%,篩片孔徑2.0 mm,擠壓載荷3 kN;圖c,物料含水率15%,篩片孔徑2.0 mm,成型溫度80 ℃;圖d,篩片孔徑2.0 mm,成型溫度80 ℃,擠壓載荷3 kN。

注:其他試驗因素水平為:圖a,物料含水率15%,篩片孔徑2.0 mm,擠壓載荷3 kN;圖b,物料含水率15%,篩片孔徑2.0 mm,成型溫度80 ℃;圖c,篩片孔徑2.0 mm,成型溫度80 ℃,擠壓載荷3 kN;圖d,物料含水率15%,成型溫度80 ℃,擠壓載荷3 kN。
為探討小麥原料成型流變特性與顆粒成型質量指標的關系[43],通過Pearson相關性分析得到小麥原料各試驗條件下三項成型顆粒質量指標與擠壓成型黏彈塑性本構模型系數兩兩間的相關關系(表3),通過比較發現,顆粒成型密度、顆粒成型率、顆粒成型硬度分別與黏性系數、塑性模量與彈性模量間的相關系數為最高,數值均大于0.80,并都達到了極顯著的相關性水平(<0.001),可說明模型系數與相應質量指標達到了較高的相關關系;其中塑性模量對成型材料內部殘余應力、變形恢復的影響較為顯著,會導致顆粒成型后內部應力變化,引起膨脹變形從而產生裂紋甚至斷裂,這或是其與顆粒成型率相關性較為顯著的部分原因[25];由此可為使用黏彈塑性本構模型系數從材料流變學角度對顆粒產品成型質量進行分析和控制提供理論依據[44]。

表3 小麥成型本構模型系數與質量指標相關性分析
注:表中肩標**表示該相關性系數達到了極顯著相關性水平(<0.001),肩標*表示達到顯著性相關性水平(<0.05)。
Note: Two * on the shoulder of correlation data means it reaches extreme significant correlation level (<0.001), while one * means it reaches significant correlation level (<0.05), no * means it is not significantly correlated.
1)為研究顆粒飼料成型特性,基于流變學建模理論,構建了表征顆粒飼料擠壓成型流變特性的非線性黏彈塑性本構模型,由應變硬化彈簧、牛頓黏滯體和庫倫摩擦元件并聯構成;以小麥原料為研究對象的本構模型數值驗證結果顯示,各應力區間模型決定系數R在0.99以上,相對誤差總平均值為3.378%,模型值與試驗值吻合度較高,并進一步通過χ檢驗綜合說明該本構模型的精度和有效性。
2)在闡述模型系數的應力函數特性基礎上,分析了各試驗因素對表征小麥原料成型流變特性的本構模型系數的影響規律:彈性模量隨含水率的升高逐漸降低,較高的擠壓載荷顯著增大了集成塑性系數,黏性系數絕對值則受到成型溫度的正向規律影響,而摩擦損耗因子受各試驗因素的影響并不明顯等。
3)分析了顆粒成型質量指標與本構模型系數間的相關關系,其中顆粒成型密度、顆粒成型率、顆粒成型硬度分別與黏性系數、塑性模量與彈性模量間的相關系數為最高,皆大于0.80的同時都達到了極顯著相關性水平(<0.001),反映了材料流變學特性與顆粒成型質量間的高度相關關系。
基于本文黏彈塑性本構模型分析的其他飼料原料(玉米、豆粕等)在顆粒飼料成型過程中表現出的成型特性,與本文分析的小麥成型特性規律是相似的,由此該模型及其分析方法是通用而具有一定可行性的,可以為顆粒飼料成型特性的研究提供一種新角度,并為通過該本構模型從材料流變學角度對顆粒成型過程、產品成型質量等進行分析和控制提供理論依據和基礎數據,從而為顆粒飼料的高效低耗生產和產品質量的改善做出貢獻。
[1] Molenda M, Montross M D. Mechanical properties of corn and soybean meal[J]. Transactions of American Society of Agricultural Engineers,2002, 45(6): 1929-1936.
[2] 孫啟新,陳書法,董玉平. 秸稈類生物質成型熱黏塑性本構模型構建[J]. 農業工程學報,2015,31(8):221-226. Sun Qixin, Chen Shufa, Dong Yuping. Establishment of thermo viscoplastic constitutive model for straw biomass briquetting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 221-226. (in Chinese with English abstract)
[3] 霍麗麗,趙立欣,田宜水,等. 生物質顆粒燃料成型黏彈性本構模型[J]. 農業工程學報,2013,29(9):200-206. Huo Lili, Zhao Lixin, Tian Yishui, et al. Viscoelastic constitutive model of biomass pellet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 200-206. (in Chinese with English abstract)
[4] 李汝莘,耿愛軍,趙何,等. 碎玉米秸稈卷壓過程的流變行為試驗[J]. 農業工程學報,2012,28(18):30-35. Li Ruxin, Geng Aijun, Zhao He, et al. Rheologic behavior of chopped corn stalks during rotary compression[J]. Trans-actions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 30-35. (in Chinese with English abstract)
[5] 鄭曉,林國祥,尹芳,等. 芝麻、花生在壓榨過程中非線性黏彈塑性模型與蠕變模擬[J]. 農業工程學報,2006,22(9):29-33. Zheng Xiao, Lin Guoxiang, Yin Fang, et al. Nonlinear viscous-elastic-plastic model and creep simulation of sesame and peanut[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(9): 29-33. (in Chinese with English abstract)
[6] 鄭曉,林國祥,李智,等.菜籽與菜籽仁的非線性黏彈塑性本構模型[J].農業機械學報,2005,36(11):87-91,101. Zheng Xiao, Lin Guoxiang, Li Zhi, et al. Nonlinear viscous-elastic-plasticity constitutive model of rapeseed and rapeseed kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(11): 87-91,101. (in Chinese with English abstract)
[7] 盧立新,王志偉. 跌落沖擊下果實動態本構模型的構建與表征[J]. 農業工程學報,2007,23(4):238-241. Lu Lixin, Wang Zhiwei. Dynamic nonlinear viscoelastic model for the fruits under dropping impact[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 238-241. (in Chinese with English abstract)
[8] Song Xiaoxu, Zhang Meng, Pei Z J, et al. Ultrasonic vibration-assisted (UV-A) pelleting of wheat straw: A constitutive model for pellet density[J]. Ultrasonics, 2015, 60: 117-125.
[9] Lam Pak Sui, Lam Pak Yiu, Sokhansanj Shahab, et al. Mechanical and compositional characteristics of steam- treated Douglas fir () during pelle-tiz-ation[J]. Biomass and Bioenergy, 2013, 56: 116-126.
[10] Chen Longjian, Liao Na, Xing Li, et al. Description of wheat straw relaxation behavior based on a fractional-order consti-tutive model[J]. Agronomy Journal,2013, 105(1): 134-142.
[11] Holm Jens K, Henriksen Ulrik B, Hustad Johan E, et al. Toward an understanding of controlling parameters in softwood and hardwood pellets production[J]. Energy & Fuels, 2006, 20(6): 2686-2694.
[12] Holm Jens K, Henriksen Ulrik B, Wand Kim, et al. Experimental verification of novel pellet model using a single pelleter unit[J]. Energy & Fuels, 2007, 21(4): 2446-2449.
[13] 中國飼料工業協會信息中心. 2015年全國飼料工業生產形勢簡況[J]. 中國飼料,2016,(10):1-2.
[14] 中國飼料工業協會全國飼料工作辦公室. 中國飼料工業年鑒[M]. 北京:中國商業出版社,2016.
[15] 曹康. 中國現代飼料工程學[M]. 上海:上海科學技術文獻出版社,2014.
[16] Li Y, Puri V M, Manbeck H B. Elastic-viscoplastic cyclic constitutive model parameter determination and evaluation for wheat en-masse[J]. Transactions of the ASAE, 1990, 33(6):1984—1995.
[17] GB 5009.3-2016,食品安全國家標準食品中水分的測定[S].
[18] ANSI/ASAE S319.4 FEB2008,Method of Determining and Expressing Fineness of Feed Materials by Sieving[S].
[19] 黃曉鵬,萬芳新,黃建龍,等. 基于擠壓模擬試驗的苜蓿草顆粒成型工藝參數優化[J]. 農業工程學報,2011,27(11):354-358. Huang Xiaopeng, Wan Fangxin, Huang Jianlong, et al. Parameter optimization of granulated alfalfa pelleting process based on extrusion simulation experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Trans-actions of the CSAE), 2011, 27(11): 354-358. (in Chinese with English abstract)
[20] 吳勁鋒,黃建龍,張維果,等. 苜蓿草粉制粒密度與擠出力模擬試驗[J]. 農業機械學報,2007,38(1):68-71. Wu Jingfeng, Huang Jianlong, Zhang Weiguo, et al. Simulated experiment and model of pelletizing density and extruding force for alfalfa powder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 68-71. (in Chinese with English abstract)
[21] Adapa P K, Tabil L, Schoenau G. Compression characteris-tics of selected ground agricultural biomass[J/OL]. Agricul-tur-al Engineering International:CIGR EJournal, 2009, 1347.
[22] Sokhansanj S, Mani S, Tabil L G. Evaluation of compaction equations applied to four biomass species[J]. Canadian Bio-systems Engineering, 2004, 46(3): 55-61.
[23] 李瀚如,潘君拯. 農業流變學概論[M]. 北京:農業出版社,1990.
[24] Macosko Christopher W. Rheology: Principles, Measure-ments and Applications[M]. Canada: WILEY-VCH Inc, 1994.
[25] Faborode M O, Ocallaghan J R. A rheological model for the compaction of fibrous agricultural materials[J]. Journal of Agricultural Engineering Research, 1989, 42(3): 165-178.
[26] 董磊,蓋超,董玉平.生物質液壓成型影響因素分析[J].農業機械學報,2011,42(7):139-143. Dong Lei, Gai Chao, Dong Yuping. Numerical study on process and influencing factors of biomass hydraulic briquetting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 139-143. (in Chinese with English abstract)
[27] 孫清,白紅春,趙旭,等. 蜂窩狀生物質燃料固化成型有限元分析[J]. 農業機械學報,2009,40(2):107-109. Sun Qing, Bai Hongchun, Zhao Xu, et al. Finite element analysis of honeycomb biomass fuel press briquettin[J]. Transactions of the Chinese Society for Agricultural Ma-chinery, 2009, 42(2): 107-109. (in Chinese with English abstract)
[28] Faborode M O, Ocallaghan J R. Theoretical-analysis of the compression of fibrous agricultural materials[J]. Journal of Agricultural Engineering Research, 1986, 35(3): 175-191.
[29] Osobov V I. Theoretical principles of compressing fibrous plant materials[J]. Trudy Viskhom, 1967, 4(55): 221-265.
[30] Phan-Thien Nhan. Understanding Viscoelasticity[M]. London: Springer-Verlag Berlin Heidelberg, 2013.
[31] 楊挺青. 黏彈性理論及其應用[M]. 北京:科學出版社,2004.
[32] 張義同. 熱黏彈性理論[M]. 天津:天津大學出版社,2002.
[33] 韓曉玲,翟之平,賀向新,等. 礦物質微量元素舔塊壓制成型過程的數值模擬[J]. 農業工程學報,2012,28(3):50-54.Han Xiaoling, Zhai Zhiping, He Xiangxin, et al. Numerical simulation of mineral microelement licking block press forming[J]. Transactions of the Chinese Society of Agricul-tural Engineering (Transactions of the CSAE), 2012, 28(3): 50-54. (in Chinese with English abstract)
[34] Kovalchenko M S. A rheological model of pressing of powders[J]. Soviet Powder Metallurgy and Metal Ceramics, 1990, 29(9): 753-756.
[35] 范林,王春光,王洪波,等.揉碎玉米秸稈可壓縮性研究[J].農業機械學報,2008,39(11):76-80. Fan Lin, Wang Chunguang, Wang Hongbo, et al. Study on the compressibility of maize straw rubbed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 76-80. (in Chinese with English abstract)
[36] 劉汝寬,肖志紅,張愛華,等. 基于松弛試驗的光皮樹果實冷態壓榨流變模型[J]. 農業工程學報,2015,31(16):278-283. Liu Rukuan, Xiao Zhihong, Zhang Aihua, et al. Rheological model for swida wilsoniana fruits in process of cold pressing based on stress-relaxation tests[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 278-283. (in Chinese with English abstract)
[37] 馮坤,蔡紀寧,陳杰,等. 螺桿擠壓連續汽爆玉米秸稈流變性分析[J]. 農業工程學報,2011,27(增刊2):11-14. Feng Kun, Cai Jining, Chen Jie, et al. Rheological analysis of corn straw pretreated by screw extrusion and continuous steam explosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 11-14. (in Chinese with English abstract)
[38] Mohsenin N N. Physical Properties of Plant and Animal Materials[M]. New York: Gordon and Breach Science Publishers, 1986.
[39] Kaliyan Nalladurai, Morey R. Vance. Constitutive model for densification of corn stover and switchgrass[J]. Biosystems Engineering, 2009, 104(1): 47-63.
[40] Nathier-Dufour Nathalie, Angue Yasmine, Devaux Marie- Francoise, et al. Influence of wheat meal variability upon compacting behaviour during pelleting[J]. Animal Feed Science and Technology, 1995, 51(3): 255-268.
[41] 郭康權,趙東,查養社,等.植物材料壓縮成型時粒子的變形及結合形式[J]. 農業工程學報,1995,11(1):138-143. Guo Kangquan, Zhao Dong, Cha Yangshe, et al. Particles deformation and combination model of the biomass materials in the compressing and forming process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transac-tions of the CSAE), 1995, 11(1): 138-143. (in Chinese with English abstract)
[42] Peleg Kalman. A rheological model of nonlinear viscoplastic solids[J]. Journal of Rheology, 1983, 27(5): 411-431.
[43] 王菊霞,崔清亮,李紅波,等. 基于流變特性的不同品種蘋果果皮質地評價[J]. 農業工程學報,2016,32(21):305-314. Wang Juxia, Cui Qingliang, Li Hongbo, et al. Evaluation on peels texture of different apple cultivars based on rheological properties[J]. Transactions of the Chinese Society of Agricul-tural Engineering (Transactions of the CSAE). 2016. 32(21): 305-314. (in Chinese with English abstract)
[44] Ren S. Thermo-Hygro Rheological Behavior of Materials Used in the Manufacture of Wood-Based Composites[D]. U.S: Oregon State University, 1991.
陳 嘯,孔丹丹,王紅英,方 鵬. 基于本構模型的顆粒飼料成型特性研究[J]. 農業工程學報,2017,33(23):267-275. doi:10.11975/j.issn.1002-6819.2017.23.035 http://www.tcsae.org
Chen Xiao, Kong Dandan, Wang Hongying, Fang Peng. Analysis of forming properties based on pellet feed forming constitutive model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 267-275. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.035 http://www.tcsae.org
Analysis of forming properties based on pellet feed forming constitutive model
Chen Xiao, Kong Dandan, Wang Hongying※, Fang Peng
(100083)
In the feed industry, through crushing, mixing and conditioning, feedstuffs are pelleted by mechanical equipment to obtain pellet products. In this compression process, the feed material particles are overlapped and staggered with each other, and the granular system is changed from the loose state into the curing bond with squeeze flow and the gap flow occurs synchronously. The mechanism for the pelleting process appears to be a regular relationship of stress and strain and other mechanical properties. Therefore, it is necessary to learn the stress-strain relationship and rheology properties of the feedstuffs during the compression process, and it is of theoretical significance to analyze the forming rules of granules and optimize the pelleting process and equipment. In this paper, based on characteristics and nonlinear properties of wheat as a feedstuff, a nonlinear visco-elasto-plastic constitutive model for characterization of rheological properties was constructed. Based on the experiment, and establishment and verification of the numerical model, the rheological properties such as viscoelasticity and plasticity of the feedstuff were analyzed by the model coefficients, and the influence of material properties and processing parameters on the rheological properties is studied. Also, the relationship between the rheological coefficients of the materials and the quality of the pellet is learned, which provides a new methodology for the study on the compression process of pellet feed. According to the process of pelleting, the factors in compression trials were selected including moisture, particle size (i.e., mesh size) and forming temperature, compression load. During the initial stage of the compression process, air between the particles was extruded by pressure and relative positions of particles are rearranged under the action of the inertial force. With the process progressing, the gap gradually decreases to infinitely small and the relative positions of the particles cease to change significantly, after which the deformation of the material can be considered as caused by its own viscoelastic properties, and therefore the compression process is divided into inertial deformation stage and visco-elasto-plastic compression stage for better description. According to the theory of rheology, the feedstuffs properties exhibited during the compression process are summarized as elastic-plastic, viscous and particle-wall friction, and represented by the strain hardening spring element, Newton viscous dashpot element, and Coulomb friction element, respectively. The elastic modulus shows the flexibility of the elastic element or the difficulty of compression. It turns out that the larger the coefficient, the more difficult the deformation and the stronger the stiffness of the material, which can stand for the strength and deformation properties. The improvement of the plastic strain showed by combined plastic exponent, which is coupled by plastic modulus and strain hardening exponent, indicates that the deformation can be maintained after the removal of the compressive stress, which has a special meaning on the quality control of the pellet feed. The viscous coefficient is mainly characterized by the ability of the particles to be bonded in the process of pelleting, thus reflecting the capacity of the formed pellet to stay stable under external force without significant damage in the current state. Meantime, the frictional loss factor can reflect the characteristics of energy dissipation, which mainly includes the friction and adhesion between the particles or the particles and the die wall. The compression stage was divided into 5 even ranges in order to study the various material properties along with the process. The numerical results of the constitutive model of wheat were obtained under 15% material moisture content, 2.0 mm mesh size, 80 ℃ forming temperature and 3 kN compression load, which showed that the determination coefficients (2) in all stress ranges were beyond 0.99 and the mean relative error values were 3.883%, 1.798%, 2.992%, 1.496%, and 6.721% in the ranges of 1-5, respectively. The comparative curve showed a good fit between the actual test value and model value; besides, the2examination showed that the2values of the data in each range were much smaller than the standard values in the degree of freedom of 130 and the significance of 0.001. Based on the above criteria, this constitutive model possesses a good performance that can be used to characterize the rheological properties of wheat. The constitutive model coefficients and the rheological properties of the feedstuff were characterized by regular changes, which showed obvious stress function: The elastic modulus increased with the increase of stress, indicating the deformation performance of the material was gradually weakened and the overall compressibility of the material decreased step by step to reach the end of forming, and the stiffness increased significantly. The increases of combined plastic exponent showed that the plastic deformation of the material increased gradually with a sudden downside in the last range. The absolute value of the viscosity coefficient increased gradually, which means that the bonding force among the material particles is enhanced with the progress of the forming, and the connection between the particles is strengthened therewith. For the influence of various forming factors, results were showed as follows: The increase in forming temperature can improve the elastic modulus, which means a better compression deformation capacity; with preferable softening, and bonding effect on the compressibility, higher moisture content can improve the combined plastic exponent and viscosity coefficient at the same time; the decrease of the particle size increases the absolute value of the viscosity coefficient, indicating its significant positive effect on the particle bonding force. The correlation relations between the pellet quality index and the constitutive model coefficients show that the pellet density, the pellet forming ratio and the pellet hardness were correlated with the viscous coefficient, plastic modulus, and elastic modulus respectively (<0.001), which owned the highest correlation coefficients that were all above 0.80, illustrating the close relationship between pellet product quality and feedstuff rheological properties. The nonlinear visco-elasto-plastic constitutive model constructed in this paper can provide a new methodology and perspective for the research of the process of feed pelleting, and provide theoretical basis for analyzing the particle forming characteristics, and product quality from the view of material rheology, which give contribution to the efficient and low-cost pellet production and the improvement of product quality.
viscoelasticity; extrusion; models; feedstuff; pellet forming properties; material rheology
10.11975/j.issn.1002-6819.2017.23.035
S816.8
A
1002-6819(2017)-23-0267-09
2017-08-09
2017-10-18
公益性行業(農業)科研專項(201203015)
陳 嘯,北京人,博士生,主要從事飼料加工工藝技術研究。北京 中國農業大學工學院,100083。Email:chenxiaocau@gmail.com.
王紅英,江西人,教授,博士生導師,主要從事飼料加工工藝技術與設備及飼料產品質量評價研究。北京 北京市海淀區清華東路17號,100083。Email:hongyingw@cau.edu.cn
中國農業工程學會會員:王紅英(ED41200500S)