周鳳格 馮阿磊 戴洪海 韓俊慶 綜述 楊哲 審校
BIM在晚期非小細胞肺癌治療中的作用
周鳳格 馮阿磊 戴洪海 韓俊慶 綜述 楊哲 審校
肺癌是全世界范圍內發病率和死亡率最高的惡性腫瘤,其中非小細胞肺癌(non-small cell lung cancer,NSCLC)是肺癌中最常見的類型。隨著對肺癌發病機制、生物學行為的深入研究及基因檢測水平的提高,以表皮生長因子受體(epidermal growth fac?tor receptor,EGFR)和間變淋巴瘤激酶(anaplastic lymphoma kinase,ALK)為靶點藥物的發現,在晚期NSCLC個體化治療的發展中具有里程碑式的意義。BIM(Bcl-2 interaction mediator of cell death)是Bcl-2家族促凋亡蛋白中的一員,參與細胞凋亡的重要介質。近年來,有研究證實BIM的表達水平及多態性會影響晚期NSCLC靶向治療及化療的療效。本文就BIM及其在晚期NSCLC靶向治療及化療中的作用進行綜述。
BIM EGFR ALK 非小細胞肺癌 靶向治療
目前,肺癌是全世界范圍內發病率和死亡率最高的惡性腫瘤,其中NSCLC占全部肺癌的85%左右[1]。表皮生長因子受體-酪氨酸激酶抑制劑(epidermal growth factor receptor tyrosine kinase inhibitors,EGFR-TKIs)及間變淋巴瘤激酶(anaplastic lymphoma kinase,ALK)抑制劑被證明對EGFR突變及ALK重排的晚期NSCLC有效,其中位無進展生存期(progression free survival,PFS)及客觀緩解率(objective response rate,ORR)優于傳統含鉑雙藥聯合方案化療[2-7]。然而,在靶向治療中,耐藥幾乎不可避免[8-9]。近年來,有研究發現BIM缺失多態性與晚期NSCLC靶向治療耐藥及化療療效有關[10],本文將對BIM(Bcl-2 interaction mediator of cell death)及其在晚期NSCLC治療中的作用綜述如下。
細胞凋亡信號轉導通路主要包括內源性途徑和外源性途徑。內源性途徑通常由胚胎組織中生長因子信號的缺失或成人組織中嚴重的細胞應激損傷激活,通過Bcl-2蛋白家族中促凋亡和抗凋亡成員之間的相互作用調控細胞凋亡[11]。BIM是Bcl-2家族BH3-only蛋白中的一員,最初是由O'Connor等[12]在1998年發現。BIM編碼的蛋白質只含有BH3結構域,能夠拮抗Bcl-2的抗凋亡作用。同年,Hsu等[13]使用酵母二元雜交的方法篩選與抗凋亡蛋白Mcl-1作用形成二聚體的蛋白質時,發現在卵巢裂解的cDNA文庫中有一種蛋白質含有3種異構體,這3種異構體也都只含有BH3結構域,并且和Mcl-1、Bcl-2及Bclxl等抗凋亡因子相互作用而誘導凋亡,因此將其命名為Bcl-2 related ovarian death agonist,簡稱BOD。后來研究發現,BIM和BOD為同一分子,即現在的Bcl-2 L11(Bcl-2-like protein 11)。在人類基因組中,BIM基因位于2q12-q13,包含6個外顯子[14]。BIM基因通過選擇性剪接編碼3個主要的亞型,分別為BIMS(BIM short)、BIML(BIM long)和BIMEL(BIM extra long),BIMS的促凋亡活性最高,其次為BIML,BIMEL的促凋亡活性最弱[15]。
BIM廣泛分布于機體的正常組織細胞中,但主要表達于造血來源的細胞。BIM在造血細胞的穩態及免疫調節方面具有重要作用[15]。此外,在神經系統的調節中,BIM參與神經元的分化和凋亡[16]。在一定條件刺激下,BIM的表達上調可以誘導腫瘤細胞凋亡,表明其具有抗腫瘤作用[17-18]。然而,在前列腺癌、乳腺癌及一些原發性腫瘤細胞中,BIM的表達上調,卻可以起到促進細胞存活的作用[19]。
BIM可被一定的凋亡刺激信號激活,如生長因子或細胞因子的撤除、紫外線照射、病毒感染等,活化的BIM從微管蛋白復合物上釋放到胞漿中,然后移位至線粒體膜上,BIM通過直接活化Bak和Bax分子或間接與Bcl-2家族中抗凋亡蛋白(如Mcl-1、Bcl-2、Bcl-xL等)結合,引起Bak和Bax的釋放。激活的Bak、Bax發生寡聚化,并結合于線粒體外膜,引起線粒體外膜透化(mitochondrial outer membrane permea?bilization,MOMP),導致細胞色素C及其他可溶性蛋白釋放到細胞質中,細胞色素C與凋亡蛋白酶活化因子-1(apoptotic protease activating factor-1,Apaf-1)形成凋亡小體,進一步激活caspases級聯反應,最終引起細胞凋亡[15,17](圖1[15])。

圖1 BIM誘導的凋亡[15]Figure 1 BIM-induced apoptosis
BIM的促凋亡功能受多個信號轉導通路調節,主要表現在轉錄及翻譯后兩個層面上。
1.4.1 轉錄的調節 表現在調節BIM mRNA的表達水平,主要調節途徑有PI3K/AKT、MEK/ERK等。叉頭狀轉錄調節因子FoxO3a對BIM的轉錄激活必不可少,可以上調BIM mRNA的表達。在FoxO3a高表達的乳腺癌MCF-7細胞株中,微管毒性藥物紫杉醇通過激活FoxO3a,上調BIM mRNA水平,誘導細胞凋亡,而在FoxO3a低表達的乳腺癌細胞株中則不能引起上述改變[15,20]。
1.4.2 翻譯后的調節 主要體現在對BIM磷酸化的調節,常見的途徑有JNK/c-Junp、MEK/ERK1/2等。在正常細胞中,BIMEL和BIML與微管動力蛋白的輕鏈DLC1/LC8結合,呈無活性狀態,一定的凋亡刺激信號激活JNK,使BIMEL/BIML發生磷酸化,連同DLC1/LC8從微管蛋白復合體中釋放入胞液,從而誘導細胞凋亡[15,21]。
EGFR-TKIs被推薦用于EGFR突變的晚期NSCLC患者,第一代TKIs有吉非替尼、厄洛替尼等。近年來,有研究證實BIM在EGFR突變的NSCLC患者靶向治療中起到重要作用;Costa等[22]在研究EGFR表型不同的NSCLC細胞系時發現對吉非替尼治療敏感的PC-9細胞系,在使用吉非替尼后,細胞內BIM的表達上調,其表達上調的程度與細胞凋亡呈正相關。通過小干擾RNA技術阻斷BIM的表達,則能夠阻斷吉非替尼誘導的細胞凋亡。該研究表明在EG?FR敏感突變的細胞中,BIM參與TKIs誘導的細胞凋亡。因此,增加BIM的表達對EGFR突變的NSCLC患者可能是一種非常有前景的治療策略。
BIM缺失多態性是指其內含子2與外顯子3之間有一段2 903 bp的缺失,導致外顯子3和外顯子4剪接錯誤,產生的BIM亞型缺少促凋亡BH3結構域,使得BIM不能行使促細胞凋亡作用。在亞洲人群中,BIM缺失多態性的發生率約為12.3%,而在高加索人群中并未檢測到BIM缺失多態性[10]。BIM缺失多態性與EGFR-TKIs耐藥有關,會降低TKIs的作用。
Ng等[10]利用聚合酶鏈式反應(PCR)證實了在TKIs敏感的PC-9細胞中,BIM缺失多態性可引起EGFR突變的NSCLC細胞株對TKIs耐藥,BH3模擬劑ABT-737則可以克服這一耐藥。為研究BIM缺失多態性與EGFR-TKIs治療之間的關系,Ng等[10]對有或無BIM缺失多態性者的中位PFS進行了比較,結果顯示BIM缺失多態性者的中位PFS較無BIM缺失多態性者短(6.6個月vs.11.9個月,P=0.002 7),BIM缺失多態性是對EGFR-TKIs治療一個新的固有耐藥機制。使用Cox回歸模型進行多因素分析顯示,在EGFRTKIs治療的NSCLC患者中BIM缺失多態性是短PFS的一個獨立的預測因素(HR=2.08,95%CI為1.29~3.38,P=0.002 8)。為進一步探討BIM缺失多態性影響TKIs的作用,有兩項研究[23-24]分別得出了與Ng等[10]相似的結論。此外,Lee等[24]對有或無BIM缺失多態性者的總生存(overall survival,OS)進行了分析,多因素變量分析表明,BIM缺失多態性是短OS的一個獨立的預測因素(HR=1.65,P=0.039)。因此,在臨床工作中建議檢測BIM基因的多態性,這將有利于NSCLC個體化治療措施的制定及對TKIs治療效果的預測。
相比較而言,BIM缺失多態性在亞洲人群中比歐洲及非洲人群中常見,Cardona等[25]首次報道了BIM缺失多態性在拉丁美洲人群中的發生率為15.7%(14/ 89),這與亞洲人群的發生率相似[10,23-24,26]。同時,該研究結果表明,在EGFR突變的NSCLC患者中,具有BIM缺失多態性的患者ORR及PFS均低于無BIM缺失多態性者(42.9%vs.73.3%,P=0.024及10.8個月vs.21.7個月,P=0.029)。多因素變量分析顯示,BIM缺失多態性是更短的PFS和OS的獨立預測因素(HR=3.0,95%CI為1.2-7.6,P=0.01;HR=3.4,95%CI為1.4-8.3,P=0.006)。這些結論與亞洲人群的研究結論相似[10,23]。
然而,也有研究未發現BIM缺失多態性會降低EGFR-TKIs治療的敏感性。Lee等[27]納入了205例2008年至2013年接受EGFR-TKIs治療的EGFR突變型NSCLC患者,其中15.6%(32/205)的患者外周血標本中檢測到BIM缺失多態性,BIM缺失多態性與患者的臨床特征(包括年齡、性別、吸煙狀態、組織學類型、分期、遠處轉移的部位)無關。有和無BIM缺失多態性者ORR相似(91%vs.84%,P=0.585),PFS和OS均無顯著性差異(12個月vs.11個月,P=0.160;31個月vs.30個月,P=0.452)。Cho等[28]在對BIM缺失多態性與NSCLC的風險及預后之間關系的研究中也得出了相似的觀點。得出以上研究結論可能的原因是肺癌的發生并不完全依賴BIM通路[29]。
Zhang等[30]回顧性研究了69例接受克唑替尼治療具有ALK/ROS1基因融合的NSCLC患者,其中BIM缺失多態性發生率為13%(9/69),BIM缺失多態性者PFS及ORR均低于無BIM缺失多態性者(中位PFS 182天vs.377天,P=0.008)(ORR 44.4%vs.81.7%,P= 0.41)。多因素變量分析顯示,BIM缺失多態性是克唑替尼對ALK陽性NSCLC患者療效的一個獨立預測因素(HR=4.786,P=0.006)。該研究表明,在ALK陽性的NSCLC患者中,BIM缺失多態性會降低克唑替尼的治療效果。這是首次在具有ALK或ROS1基因融合的中國NSCLC患者中探討BIM缺失多態性與克唑替尼療效關系的研究,然而,該研究是一項單中心、回顧性的研究,還需要精心設計多中心、前瞻性研究來證實BIM缺失多態性與ALK抑制劑療效的關系。
含鉑兩藥聯合方案被推薦用于NSCLC一線化療,有研究[31]提示在鉑類耐藥的細胞中BIM的表達水平降低,提高BIM的表達水平可以使耐藥的腫瘤細胞恢復對鉑類的敏感性,這表明BIM的表達水平在鉑類誘導的細胞凋亡中具有重要作用。另有研究[32]提示BIM過表達可以提高肺癌細胞對抗微管化療藥紫杉醇的敏感性,這表明BIM高表達者可能對紫杉類化療藥更敏感。
Zhong等[26]研究顯示,在EGFR突變的NSCLC患者中,一線包含培美曲塞或鉑類的化療方案,具有BIM缺失多態性者PFS均低于無缺失多態性者(3.32個月vs.5.30個月,P=0.012)。此外,BIM純合型缺失患者的PFS雜合型缺失者更短(0.75個月vs.2.70個月,P<0.001)。該研究表明BIM缺失多態性影響NSCLC患者的化療療效。同時,該研究還對化療引起的不良反應進行了分析,BIM缺失多態性者不良反應的發生率高于無缺失多態性者(18.9%vs.5.4%,P= 0.012)。Lee等[24]在對BIM多態性的狀態與化療療效的研究中也得出了相似的觀點。
BIM是Bcl-2家族促凋亡蛋白中的一員,其表達水平的高低和缺失多態性在NSCLC靶向治療及化療中起到重要作用。針對BIM基因可為今后的臨床工作提供新的治療思路:1)對BIM基因的狀態進行精確的檢測,將有助于預測靶向治療及化療的治療效果。2)針對BIM缺失多態性引起的TKIs耐藥,使用BH3模擬劑(如ABT-737、ABT-263),可以提高EG?FR-TKIs對NSCLC腫瘤細胞的殺傷作用[33]。另有研究[34]發現,在P53野生型或突變型NSCLC患者中,ABT-263可以協同增強鉑類化療藥物引起的腫瘤細胞凋亡。3)增加BIM的表達對EGFR突變的NSCLC患者可能是一種非常有前景的治療策略,如PI3K抑制劑(LY294002)和MEK抑制劑(U0126)聯合,可增加BIM的表達,使耐藥細胞恢復對吉非替尼的敏感性,誘導腫瘤細胞凋亡[35];另外組蛋白去乙酰化酶(HDAC)抑制劑-伏立諾他可增加BIM的表達,與吉非替尼聯合使用,可促進吉非替尼誘導的腫瘤細胞凋亡[36]。期待未來有更多針對BIM的藥物被應用于臨床,為NSCLC患者的治療提供新的策略。
[1]Dizon DS,Krilov L,Cohen E,et al.Clinical Cancer Advances 2016: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology[J].J Clin Oncol,2016,34(9):987-1011.
[2]Maemondo M,Inoue A,Kobayashi K,et al.Gefitinib or chemotherapy for non-small-cell lung cancer withmutated EGFR[J].N Engl J Med,2010,362(25):2380-2388.
[3]Mok TS,Wu YL,Thongprasert S,et al.Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma[J].N Engl J Med,2009,361 (10):947-957.
[4]Han JY,Park K,Kim SW,et al.First-SIGNAL:first-line single-agent iressaversus gemcitabine and cisplatin trial in never-smokers withadenocarcinoma of the lung[J].J Clin Oncol,2012,30(10):1122-1128.
[5]Sequist LV,Yang JC,Yamamoto N,et al.Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastaticlung adenocarcinoma with EGFR mutations[J].J Clin.Oncol,2013,31(27):3327-3334.
[6]Rosell R,Carcereny E,Gervais R,et al.Erlotinib versus standard chemotherapy as first-line treatmentfor European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC):a multicentre,open-label,randomised phase 3 trial[J]. Lancet Oncol,2012,13(3):239-246.
[7]Cappuzzo F,Morosibilot D,Gautschi O,et al.Management of crizotinib therapy for ALK-rearranged non-small cell lung carcinoma:an expert consensus[J].Lung Cancer,2015,87(2):89-95.
[8]Rosell R,Bivona TG,Karachaliou N.Genetics and biomarkers in personalisation of lung cancer treatment[J].Lancet,2013,382(9893): 720-731.
[9]Majem M,Remon J.Tumor heterogeneity:evolution through space and time in EGFRmutant non small cell lung cancer patients[J].Transl Lung Cancer Res,2013,2(3):226-237.
[10]Ng KP,Hillmer AM,Chuah CT,et al.A common BIM deletion polymorphism mediates intrisic resistance and inferior responses to tyrosine kinase inhibitors in cancer[J].Nat Med,2012,18(4)521-528.
[11]Ashkenazi A,Herbst RS.To kill a tumor cell:the potential of proapoptotic receptor agonists[J].J Clin Invest,2008,118(6):1979-1990.
[12]O'Cononr L,Strasser A,O'Reilly LA,et al.Bim:a novel member of the Bcl-2 family that promotes apoptosis[J].Embo J,1998,17(12): 384-395.
[13]Hsu SY,Lin P,Hsueh AJ.BOD(Bcl-2-related ovarian death gene)is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members [J].Mol Endocrinol,1998,12(9):1432-1440.
[14]Bouillet P,Zhang LC,Huang DC,et al.Gene structure alternative splicing,and chromosomal localization of pro-apoptotic Bcl-2 relative Bim[J].Mamm Genome,2001,12(2):163-168.
[15]Sionov RV,Vlahopoulos SA,Granot Z.Regulation of Bim in Health and Disease[J].Oncotarget,2015,6(27):23058-23134.
[16]Jin HO,park IC,An S,et al.Up-regulation of bak and bim via jnk downstream pathway in the response to nitric oxide in human glioblastoma cells[J].J Cell Physiol,2006,206(2):477-486.
[17]Youle RJ,Strasser A.The BCL-2 protein family:opposing activities that mediate cell death[J].Nat Rev Mol Cell Biol,2008,9(1):47-59.
[18]Wang J,Liu S,Yin YC,et al.FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis[J].Apoptosis. 2015,20(3):399-409.
[19]Gogada R,Yadav N,Liu JW,et al.Bim,a proapoptotic protein,upregulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer[J].J Biol Chem,2013, 288(1):368-381.
[20]Sunters A,Fernández de Mattos S,Stahl M,et al.FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines[J].J Biol Chem,2003,278(50):49795-49805.
[21]Ley R,Ewings KE,Hadfield K,et al.Regulatory phosphorylation of Bim:sorting out the ERK from the JNK[J].Cell Death Differ,2005, 12(8):1008-1014.
[22]Costa DB,Halmos B,Kumar A,et al.BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations[J].PLoS Med,2007,4(10):1669-1679.
[23]Isobe K,Hata Y,Tochigi N,et al.Clinical significance of BIM deletion polymorphism in non-small-cell lung cancer with epidermal growth factor receptor mutation[J].J Thorac Oncol,2014,9(4):483-487.
[24]Lee JH,Lin YL,Hsu WH,et al.Bcl-2-Like protein 11 deletion polymorphism predicts survival in advanced non–small-cell lung cancer[J].J Thorac Oncol,2014,9(9):1385-1392.
[25]Cardona AF,Rojas L,Wills B,et al.BIM deletion polymorphisms in Hispanic patients with non-small cell lung cancer carriers of EGFR mutations[J].Oncotarget,2016,7(42):68933-68942.
[26]Zhong J,Li ZX,Zhao J,et al.Analysis of BIM(BCL-2 like 11 gene)deletion polymorphism in Chinese non-small cell lung cancer patients [J].Thoracic Cancer,2014,5(6):509-516.
[27]Lee JY,Ku BM,Lim SH,et al.The BIM deletion polymorphism and its clinical implication in patients with EGFR-mutant non-small-cell lung cancer treated with egfr tyrosine kinase inhibitors[J].J Thorac Oncol,2015,10(6):903-909.
[28]Cho EN,Kim EY,Ji YJ,et al.BCL2-like 11 intron 2 deletion polymorphism is not associated with non-small cell lung cancer risk and prognosis[J].Lung Cancer,2015,90(1):106-110.
[29]Wu SG,Liu YN,Yu CJ,et al.Association of BIM deletion polymorphism with intrinsic resistance to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma[J].JAMA Oncol,2016,2(6):826-828.
[30]Zhang L,Jiang T,Li X,et al.Clinical features of Bim deletion polymorphism and its relation with crizotinib primary resistance in Chinese patients with ALK/ROS1 fusion-positive non-small cell lung cancer [J].Cancer,2017,123(15):2927-2935.
[31]Wang J,Zhou JY,Wu GS.Bim protein degradation contributes to cisplatin resistance[J].J Bio Chem,2011,286(25):22384-22392.
[32]Savry A,Carre M,Berges R,et al.Bcl-2-enhanced efficacy of micro-tubule-targeting chemotherapy through Bim overexpression:implications for cancer treatment[J].Neoplasia,2013,15(1):49-60.
[33]Cragg MS,Kuroda J,Puthalakath H,et al.Gefitinib-Induced killing of NSCLC cell lines expressing mutant egfr requires BIM and can be enhanced by BH3 mimetics[J].PLoS Med,2007,4(10):1681-1690.
[34]Matsumoto M,Nakajima W,Seike M,et al.Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax-and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells[J].Biochem Bioph Res Co,2016,473(2):490-496.
[35]Li HY,Zhou SW,Li XF,et al.Gefitinib-resistance is related to BIM expression in non-small cell lung cancer cell lines[J].Cancer Biother Radio,2013,28(2):115-123.
[36]Nakagawa T,Takeuchi S,Yamada T,et al.EGFR-TKI resistance due to BIM polymorphism can be circumvented in combination with HDAC inhibition[J].Cancer Res,2013,73(8):2428-34.
(2017-06-09收稿)
(2017-08-25修回)
(編輯:楊紅欣 校對:鄭莉)
Effect of BIM on advanced non-small cell lung cancer
Fengge ZHOU,Alei FENG,Honghai DAI,Junqing HAN,Zhe YANG
Tumor Research and Therapy Center,Shandong Provincial Hospital Affiliated to Shandong University,Jinan 250021,China
Zhe YANG;E-mail:sdslyyyz@sina.com
Lung cancer displays the highest morbidity and mortality worldwide.Non-small cell lung cancer(NSCLC)is the most common type of lung cancer.In-depth research was performed on the pathogenesis and biological behavior of lung cancer and the improvement of genetic testing level.The discovery of drugs targeting epidermal growth factor receptor and anaplastic lymphoma kinase plays a significant role in individual treatment of advanced NSCLC.BIM is a protein in the Bcl-2 family that promotes apoptosis,which leads to cell death.The BIM expression level and polymorphism can influence the therapeutic effect of targeted therapy and chemotherapy on advanced NSCLC.Therefore,this review summarizes BIM and its effects on targeted therapy and chemotherapy for advanced NSCLC.
BIM;EGFR;ALK;NSCLC;targeted therapy
山東大學附屬省立醫院腫瘤研究治療中心(濟南市250021)
楊哲 sdslyyyz@sina.com
10.3969/j.issn.1000-8179.2017.21.652

周鳳格 專業方向為胸部腫瘤放化療及綜合治療。E-mail:1105519066@qq.com