李穗+張俠
小學數學教學應該基于學生已有的數學知識水平和認知經驗,引導學生參與數學化活動,促進學生數學素養的提升。據此,在小學數學教學中,教師應該而且必須把準學生的具體“學情”,從學情分析中找尋學生的真實位置。只有直面學生的“學習起點”“學習動態”“學習需求”,才能找到數學教學的最佳路徑,讓學生的數學學習真正有效。以下將結合蘇教版小數教材加以說明。
一、掃描:直擊“教”與“學”的錯位現實
在一些數學課堂上,經??梢钥吹浇處熅实慕虒W設計和環節序列,似乎非常完美。但筆者發現,這樣的課堂,常常是“古井無波”的:學生學得疲乏,教師教得心累。教師的“教”與學生的“學”嚴重錯位,教師只考慮“教”,而沒有研究學生的“學”,教學便淪落為教師的一廂情愿。
首先,學生并非洛克意義上的“白紙”“白板”,他們擁有豐富的生活和數學活動經驗。但在數學教學中,教師往往由于缺乏調查而低估學生的學習起點,甚至將學生的數學學習視為零起點。例如,對于四年級下冊的“三角形的認識”,某老師在教學中通過多媒體課件出示了很多圖形,讓學生判斷哪一個圖形是三角形,學生的學習熱情一下子冷了下去。對于四年級學生來說,他們早在一二年級認識了三角形,對于三角形已經具備了豐富的感性經驗。教學中,教師應該將教學定位于“三角形的各部分名稱”“圍成三角形的充要條件”上。這樣教學才能對癥下藥,富有針對性、實效性。
其次,許多教師出于對前蘇聯著名教育家贊可夫“教學最優化”理論的片面理解,采用了高速度、高難度的教學方式。由于所設計的題目難度高,一大片甚至全部的學生在學習中一片模糊、一片茫然,教師也急得滿頭大汗。例如,某教師在初步教學教材中的“相遇問題”(四年級下冊)后,又出示了“追及問題”的相關習題、“火車過橋”問題、“蘇步青的小狗行走路線”問題等。學生還消化不及,教師就總結出了所謂的“數量關系式”,教學效果也大打折扣。
此外,由于學生的認知水平和生活經驗等不盡相同,其學習情況也存在千差萬別。而在數學教學中,教師往往用大一統的預設進行教學、用大一統的作業對待學生、用大一統的要求規范學生,由此導致學優生“吃不飽”、學困生“吃不了”。教學是需要分層設計的,每層都有不同的要求。具體到每堂課,可以有基礎性要求、發展性要求、提升性要求等。例如教學“認識比”,基礎性要求是認識比、比值,會求比值;發展性要求是能夠準確說出不同類量的比所產生的第三個量的意義。據此針對不同的學生展開分層教學,因材施教。
二、建構:學情關照下的教學實踐
教師的“教”必須服務于學生的“學”。學生的具體學情是數學教學的出發點和歸宿。在數學教學中,教師要探明學生學習的“起點”,把握學生數學學習的“遷移點”,診斷學生的“學習盲點”。
1.探尋數學學習起點,判斷學生的數學學習實然狀態
著名教育心理學家奧蘇伯爾說:“如果要將教育心理學還原成一句話的話,那就是要探明學生已經知道了什么,并據此展開教學?!痹跀祵W教學中,教師要探尋學生的數學學習起點,了解學生的已學,關注學生的能學,權衡學生的難學。
例如全國著名特級教師張齊華在講授“百分數的意義”時,首先讓學生說一說生活中哪些地方運用了百分數,并且給學生發了一張紙,讓學生寫下自己對百分數的疑問。學生舉出了豐富的例子,如空氣中的氧氣大約占空氣總量的20%,羊毛衫羊毛含量為95%等,體現了學生豐富的數學生活經驗。對于學生所舉的每一個鮮活例子,張老師都結合具體情境讓學生理解,使學生在不知不覺中掌握了百分數的意義。正是基于對學生的已有知識經驗的掌握和對學生數學學習實然狀態的掌握,張老師才能在課堂上從容應對,才能在教學中游刃有余。
2.確定學教距離,形成數學階段學習的應然目標
數學教學不僅要探明學生數學學習的知識起點、心理起點,還要形成數學階段學習的應然目標。只有這樣才能準確地確定學生的“學”與教師的“教”之間的距離。根據著名教育心理學家維果斯基的觀點,教學就是在“最近發展區”內,將學生由“現實發展區”導向“可能發展區”。學生的“學”是學生的“現實發展區”,而教師的“教”就是學生的“可能發展區”。
例如講授“比的基本性質”時,部分學生由于五年級公因數和公倍數的學習不夠扎實,不能正確說出兩個數的最大公因數和最小公倍數。對于這部分學生來說,運用“比的基本性質”直接化簡比有一定的困難?;诖?,筆者要求其運用“求比值”的方法化簡比。而對于能夠準確判斷兩個數的最大公因數和最小公倍數的學生,筆者要求其掌握兩種化簡比的方法,并且讓學生探索規律,形成了“分數比一般乘分母的最小公倍數,小數比一般乘10、100、1000……,整數比一般除以前項和后項的最大公因數,混合比要靈活化簡”的化簡比策略。通過這樣對學生的分層關照,每一位學生的數學素養都能真正得到提升。
3.把握學情動態,探尋學生數學學習的現實路徑
學生的“學情”是不斷發生變化的,是動態的、生成性的。在數學教學中,教師不僅應探尋學生的數學“實學”,確立學生的數學“應學”,更要激勵學生的數學“想學”?!跋雽W”是一種積極的學習心向,可以調動學生數學學習的內驅力,發現學生數學學習的興趣焦點。
例如學習“周期問題”(四年級上冊)時,教材出示了彩旗、彩燈和彩花等事例。對此,筆者在教學中讓學生用自己喜歡的方式探索第25盞彩燈、第25盆彩花、第25面彩旗各是什么顏色。不同認知傾向的學生選擇了不同的問題表征方式:形象型的學生選擇了繼續畫圖;符號型的學生選擇了用符號表示;邏輯型的學生選擇了推理計算。教學中,教師既要尊重不同學生的不同表征方式,也要引導學生進行數學的抽象、推理,建立計算模型等。
三、結語
學情的把脈讓數學教學更“接地氣”。教學中教師要讀懂學情、利用學情,將學生的數學學習從實然狀態向應然目標提升。學生的數學學習是動態的、發展的,教師要善于傾聽,善于對話,善于追問,努力培養學生的數學核心素養。通過了解學生的認知差異,落實數學分層教學,調整數學教學重心,靈活把握數學教學方式。
(責任編輯 郭向和)endprint