張 新,張 漫,王維洲,楊建華,井天軍
(1. 中國農業大學信息與電氣工程學院,北京 100083;2. 內蒙古科技大學信息工程學院,包頭 014010;3. 國網甘肅省電力公司電力科學研究院,蘭州 730050)
基于改進雜交粒子群算法的農村微能網多能流優化調度
張 新1,2,張 漫1※,王維洲3,楊建華1,井天軍1
(1. 中國農業大學信息與電氣工程學院,北京 100083;2. 內蒙古科技大學信息工程學院,包頭 014010;3. 國網甘肅省電力公司電力科學研究院,蘭州 730050)
西部農村地區電網薄弱,光伏和風電扶貧投資未考慮配套輸配電設施,用以處理生物質廢棄物的沼氣受季節性溫度變化影響運行經濟性不佳,為解決上述問題,該文提出利用沼氣作為氣源含可再生能源的冷-熱-電-氣多能流農村微能網供能架構,建立相應的多能流微能網調度模型,針對粒子群算法早熟、容易陷入局部最優的問題,提出采用動態調整慣性權重的雜交粒子群算法進行求解,算例結果表明,通過對系統內各設備的調度,有效降低系統日運行成本,在冬季,采用改進型雜交粒子群算法所得日運行費用相比采用基本型粒子群算法降低7.6%,其相比系統未優化所得日運行費用降低79.1%;在夏季,相比基本型粒子群算法與未優化分別降低17.0%、71.2%,實現微能網的經濟運行,證明了本模型和算法的正確性。
優化;算法;電;農村微能網;能源互聯網;雜交粒子群算法;冷熱電氣多能流
隨著煤炭、石油等傳統能源日益枯竭,全球環境的不斷惡化,可再生能源得到了世界各國前所未有的重視,其相關技術得到快速發展[1-2]。美國未來學家杰里米?里夫金提出能源互聯網的概念[3],國內外學者著力推動智能電網向能源互聯網轉變[4-7],不僅關注電能的清潔利用,更加關注冷-熱-電-氣的能源綜合利用[8-11]。隨之微能網的概念被提出[12],其作為能源互聯網的子系統,主要由電力網、冷熱能網、燃氣網絡等組成,應用于城市社區、工業園區、農村聚集地等方面,用戶側負荷可以根據實時電價進行需求響應,廣泛應用蓄冷蓄熱等分散儲能裝置,進行冷-熱-電-氣多能源互相轉換,是消納可再生能源的主要方式[13-14]。中國農村地區生物質能源豐富,但是利用效率低下,環境污染嚴重,可再生能源十分豐富,但現有農村電網薄弱,光伏和風電扶貧配套不足,因此進行農村微能網的研究可以實現生物質能、可再生能源的就地綜合利用,改善農村環境,對新農村建設發展具有十分重要的意義[15]。
目前國內外對微能網已有一定研究。文獻[16-18]對電-熱、電-氣進行聯合分析,構建初步的多能流微能網架構。文獻[19]利用內點法求解微型能源網日前優化調度模型,并利用中新生態城為例進行分析,文獻[20-22]利用混合整數規劃方法建立冷熱電聯供微網優化調度模型,運用分枝定界法進行求解,得到微網低成本運行方案,上述求解方法均為確定性算法,當計算量較大時,計算時間過長,可能無法得到最終解。文獻[23]提出改進多目標交叉熵算法對冷熱電聯供微網進行求解,文獻[24]提出多組粒子群優化算法求解熱電聯供微網調度模型,上述文獻雖然運用了人工智能算法,但微網模型不夠全面,算法在廣泛適用性和收斂速度方面仍存在一些問題。
綜上所述,目前文獻無具體針對農村地區進行微能網優化設計,未能實現多能聯合穩定供能的控制,針對此問題,本文建立冷-熱-電-氣多能流農村微能網優化調度模型,其中包含沼氣、光伏、風電、空氣源熱泵等適合農村地區推廣的裝置,考慮了爬坡約束等其他文獻較少考慮的實際約束問題,針對優化調度常用的粒子群求解算法早熟、容易陷入局部最優的問題,提出利用動態調整慣性權重的雜交粒子群算法進行求解,通過調度微能網內部各運行設備出力,以期實現微能網的經濟優化運行。
本文建立的冷-熱-電-氣多能流微能網主要包括風力發電系統、光伏發電系統、微型燃氣輪機、燃氣鍋爐、余熱鍋爐,溴化鋰吸收式制冷機、冷熱電儲能裝置、空氣源熱泵換冷裝置、空氣源熱泵換熱裝置,系統供能架構如圖1所示。
微能網與外部配電網相連接,當微型燃氣輪機、風力發電系統、光伏發電系統的電力供應大于內部電負荷時,向外部配電網售電,反之向外部配電網購電。蓄電池在微能網自身電能供應大于內部電負荷時,進行充電,反之進行放電,主要起削峰填谷的作用。熱負荷由余熱鍋爐、燃氣鍋爐、空氣源熱泵換熱裝置提供,供熱設備的原料由生物質廢物產生的沼氣和空氣提供,儲熱裝置在微能網自身熱能供應大于內部熱負荷時,進行蓄熱,反之放熱,主要起削峰填谷的作用。冷負荷由溴化鋰吸收式制冷機、空氣源換冷裝置提供,儲冷裝置在微能網自身冷能供應大于內部冷負荷時,進行蓄冷,反之放冷,也起削峰填谷的作用。

圖1 冷-熱-電-氣多能流農村微能網供能架構Fig.1 Energy supply structure of rural micro energy grid combined cooling, heating, power and gas
1.1 微型燃氣輪機冷熱電聯供系統經濟數學模型
冷熱電聯供系統主要由微型燃氣輪機、余熱鍋爐、燃氣鍋爐、溴化鋰吸收式制冷機組成,其利用沼氣燃燒推動微型燃氣輪機發電,燃燒后產生的高溫煙氣通過余熱鍋爐制取熱能與燃氣鍋爐制取的熱能共同滿足村民熱負荷需求,余熱鍋爐產生的高溫蒸汽通過溴化鋰吸收式制冷機產生冷能滿足微能網冷負荷需求。其經濟數學模型[25]如下所示:

1.2 空氣源熱泵冷熱聯供系統經濟數學模型
空氣源熱泵冷熱聯供系統主要由壓縮機、換熱裝置和換冷裝置組成,它以農村室外天然空氣作為冷熱原料,通過電能帶動壓縮機工作驅動冷熱工質進行循環,產生所需要的冷熱能源,其經濟數學模型如式(4)、(5)所示。

1.3 儲冷熱電裝置經濟數學模型
儲能裝置在微能網中主要起削峰填谷的作用,當系統供應冷熱電能力大于冷熱電負荷需求時,儲能裝置進行儲能運行,當系統供應冷熱電能力小于冷熱電負荷需求時,儲能裝置放出能量滿足負荷需求,其統一數學模型[26]如下

式中E(t)為儲能裝置在t時段的總能量,kW·h;δ為儲能裝置自放能效率,數值很小;為儲能裝置在t時段充能和放能功率,kW;ηch和ηdis為儲能裝置充能和放能效率;ΔT為單位時段,h。
上節建立了農村微能網各運行設備的經濟數學模型,本節在其基礎上建立微能網經濟調度模型,以微能網單日運行費用最低為目標函數,綜合考慮各種相關約束,通過動態調整慣性權重的雜交粒子群算法進行求解,根據求解結果制定調度運行策略。
2.1 目標函數
沼氣是微能網內部生物質廢棄物發酵后提供,根據沼氣的特性,增加沼氣加熱系統,利用可再生能源給加熱系統供能,保證沼氣的穩定供應,不存在傳統微能網外購天然氣的費用,同時空氣源熱泵所用的空氣為免費供給,降低了微能網的運行成本,因此本文所提農村微能網運行費用主要包括從配電網購電和向配電網售電的費用、系統的運行維護費用,目標函數如下:

式中Celectri為微能網與配電網之間購電費用和售電費用的差值;Cmaintain為微能網運行維護費用,其主要包括設備定期檢修人工成本、光伏組件清掃費用、沼氣發電管路維護費用、低壓線路及配電設施維護費用等,以上參數單位為元。

2.2 約束條件
1)電功率平衡約束條件

2)熱功率平衡約束條件

3)冷功率平衡約束條件

4)微型燃氣輪機約束

5)余熱鍋爐約束

6)燃氣鍋爐約束


8)儲冷、儲熱、儲電裝置模型約束
由于蓄電池、儲熱裝置和儲冷裝置在微能網中的作用類似,原理類似,故可以用通用模型約束處理

式中E(t)為t時段儲冷儲熱儲電裝置的容量,kW·h;Emin、Emax為儲冷、儲熱、儲電裝置的容量最大值、最小值,kW/h-1;為儲冷、儲熱、儲電裝置功率,kW;Pcmax、Pdmax為儲冷儲熱儲電裝置充電最大功率和放電最大功率,kW。
9)空氣源熱泵換熱裝置約束

粒子群優化算法(particle swarm optimization,PSO算法)是一種進化計算方法,主要思路為首先初始化一群隨機粒子(隨機解),然后粒子們就追隨當前最優粒子在解空間中搜索,即通過迭代找到最優解。假設d維搜索空間中的第i個粒子的位置和速度分別為Xi=(xi,1xi,2…xi,d)和Vi=(vi,1vi,2…vi,d),在每一次迭代中,粒子通過跟蹤2個最優解來更新自己,第1個就是粒子本身所找到的最優解,即個體最優解pbest,記為Pi=(pi,1pi,2…pi,d);另一個是整個種群目前找到的最優解,即全局最優解gbest,記為Pg=(pg,1pg,2…pg,d)。在找到這2個最優值時,粒子根據如下的公式來更新自己的速度和新的位置[27]。

式中c1、c2為正的學習因子;r1、r2為0~1之間均勻分布的隨機數;w為慣性權重。
針對PSO算法易早熟,容易陷入局部最優的問題,本文采用基于動態調整慣性權重的雜交粒子群算法求解農村微能網經濟調度模型,動態調整慣性權重公式如下

式中wmax、wmin為w的最大值和最小值,u為當前迭代步數,umax為最大迭代步數,通常取wmax=0.9,wmin=0.4。

圖2 基于動態調整慣性權重的雜交粒子群算法流程圖Fig.2 Flowchart of crossbreeding particle swarm optimization algorithm based on dynamic inertia weight
雜交粒子群算法是將遺傳算法中的雜交概念引入PSO算法中,在每次迭代中,根據雜交概率選取指定數量的粒子放入雜交池內,池中的粒子隨機兩兩雜交,產生同樣數目的子代粒子,并用子代粒子代替親代粒子,子代粒子的位置由父代粒子位置進行交叉得到

式中p是0~1之間的隨機數;child(x)為子代粒子位置;parent1(x)和parent2(x)為父代粒子位置。
子代粒子速度公式為

式中child(v)為子代粒子速度;parent1(v)和parent2(v)為父代粒子速度。
算法流程圖如圖2所示。
本文選取西部某村莊為例,根據地區實際情況,冬天進行電能和熱能的供應,夏天進行電能和冷能的供應,電網供電電價采用甘肅發改委發布的分時電價,向電網售電電價為0.65元/(kW·h),算例中的供能設備[19,28]參數如表1所示,電網供電分時電價[29]如表2所示,各設備單位功率維護費用[30]如表3所示,儲能設備參數[19]如表4所示。

表1 供能設備參數Table 1 Parameters of energy supply equipment

表2 分時電價Table 2 Time-of-use electricity price

表3 各設備單位功率維護費用Table 3 Equipment maintenance cost of unit power
蒙特卡羅模擬是一種隨機模擬方法,它通過已知的概率函數模型得到隨機變量,能對現實中的物理過程進行較精確模擬,本文通過該方法參考文獻[31]所建風機、光伏和負荷出力模型得到西部某村莊冬季典型日電負荷、熱負荷、風電、光伏預測曲線和夏季典型日電負荷、冷負荷、風電、光伏預測曲線如圖3a和圖3b所示。將表1-表4和圖3的數據代入微能網經濟優化調度模型中,運用基于動態調整慣性權重的雜交粒子群算法進行求解得到該村典型日的優化調度結果如圖4所示。其中求解算法設置如下:粒子數80,最大迭代數200,學習因子2,初始慣性權重0.9,終止慣性權重0.4,雜交池大小比率0.1,雜交概率0.9。

表4 儲能設備參數Table 4 Parameters of energy storage equipment

圖3 典型日光伏、風電和冷熱電負荷預測曲線Fig.3 Forecasted photovoltaic, wind power outputs and electric,cooling and heat loads for a typical day
圖4 a為冬季典型日農村微能網電負荷平衡曲線。從圖4a得到,當光伏和風電可以發電的時間段,光伏和風電按照預測出力滿發,滿足微能網部分用能需求,由于沼氣免費且供應充足,電負荷主要由微型燃氣輪機發電供應,在谷時段 00:00-04:00時,微型燃氣輪機發電和風電可以滿足負荷要求,同時給蓄電池充電,在谷時段05:00-07:00時,電價低廉,微型燃氣輪機發電和風電不能滿足負荷要求的部分由外購電網電功率補充,同時繼續給蓄電池進行充電,在平時段和峰時段07:00-23:00時,由于電價較高,微能網用電負荷主要由微型燃氣輪機發電、蓄電池放電、光伏、風電滿足,在20:00時,由于蓄電池電能不足、光伏發電量趨于0,此時部分用電負荷由外購電網電功率滿足。整個運行周期中蓄電池在谷時段充電,峰時段放電,承擔削峰填谷的作用,降低了微能網的運行費用。
圖4b為冬季典型日農村微能網熱負荷平衡曲線。從圖4b得到,余熱鍋爐、燃氣鍋爐、熱儲存器和空氣源熱泵換熱裝置共同承擔熱負荷的供應,在谷時段23:00-07:00時,電價低廉,空氣源熱泵換熱裝置工作,同時給熱儲存器蓄熱,在平時段和峰時段 07:00-23:00時,電價較高,熱負荷主要由余熱鍋爐、燃氣鍋爐、熱儲存器供應,不足的部分再由空氣源熱泵換熱裝置滿足。熱儲存器在電低谷時期蓄熱,電高峰期放熱,滿足了系統的需求。
圖4c為夏季典型日農村微能網電負荷平衡曲線。由于農村地廣人稀,夏季負荷比冬季負荷小,因此夏季使用4臺微型燃氣輪機,對剩余2臺微型燃氣輪機進行檢修,故夏季微型燃氣輪機發電最大功率為400 kW。從圖4c得到,與圖4a類似,當光伏和風電可以發電的時間段,光伏和風電按照預測出力滿發,微型燃氣輪機基本處于最大發電狀態,在谷時段 23:00-07:00,電價低廉,微型燃氣輪機和風電不能滿足的用電負荷由外購電網電功率滿足并給蓄電池充電,在平時段和峰時段 07:00-23:00,電負荷主要求微型燃氣輪機發電、蓄電池放電、光伏和風電滿足,在整個運行周期,蓄電池仍然起到了削峰填谷的作用。

圖4 典型日冷熱電負荷平衡曲線Fig.4 Electric, heat and cooling balance curves of a typical day
圖4 d為夏季典型日農村微能網冷負荷平衡曲線。從圖4d得到,溴化鋰吸收式制冷機、冷儲存器和空氣源熱泵換冷裝置共同承擔冷負荷的供應,在谷時段23:00-07:00時,電價低廉,空氣源熱泵換冷裝置工作,同時給冷儲存器蓄冷,在平時段和峰時段07:00-23:00時,電價較高,冷負荷主要由溴化鋰吸收式制冷機、冷儲存器供應,不足的部分在由空氣源熱泵換冷裝置滿足。冷儲存器在電低谷時期蓄冷,電高峰時期放冷,滿足了系統的需求。
圖5a和圖5b為冬季典型日和夏季典型日算法改進前后運行費用對比。通過圖5a和圖5b得到,基本粒子群算法尋優慢,容易陷入局部最優解,采用基于動態調整慣性權重的雜交粒子群算法可以加快尋優速度,找到更合理全局最優解,證明了本算法的先進性和可行性。
假設系統未優化,根據本文圖3a和b所示冬季與夏季典型日光伏、風電、電負荷、熱負荷、冷負荷預測曲線,按照表1所描述的各供能設備參數、表2所描述的分時電價、表3所描述的各設備維護費用,系統供能方案采用電負荷優先由風電、光伏滿足,不足的部分由外部配電網按分時電價滿足,熱負荷由余熱鍋爐、燃氣鍋爐滿足,冷負荷由溴化鋰吸收式制冷機滿足,則計算得到系統未優化日運行費用冬季為8 504.5元、夏季為6 339.2元,根據圖5a和圖5b得,采用基本型粒子群算法優化后得到日運行費用冬季為1 921元、夏季為2 201元,采用改進型雜交粒子群算法對系統進行優化后得到日運行費用冬季為1 774元、夏季為1 826元,各算法系統日運行費用如表5所示。

圖5 典型日利用改進型粒子群算法和基本型粒子群算法運行費用比較Fig.5 Running cost comparison of a typical day based improved and basic particle swarm algorithms
表5結果表明,采用改進型雜交粒子群算法對微能網進行優化調度,降低系統購電成本,運行維護費用少量增加,其優化所得系統日運行費用優于采用基本型粒子群算法優化和系統未優化所得系統日運行費用,較后2種運行方式冬季費用分別降低了7.6%和79.1%、夏季費用分別降低了17.0%和71.2%,因此采用本文所提算法對微能網各供能設備進行調度,可以顯著降低系統日運行費用,實現微能網經濟運行。
本文構建包含冷-熱-電-氣多能流微能網架構,建立農村微能網優化調度模型,利用基于動態調整慣性權重的雜交粒子群算法求解,得到微能網優化調度運行方案,算例結果表明,本算法可以快速穩定的找到合理全局最優解。
本算法還可顯著降低系統日運行費用,在冬季,采用改進型雜交粒子群算法所得日運行費用相比采用基本型粒子群算法降低7.6%,其相比系統未優化所得日運行費用降低79.1%;在夏季,采用改進型雜交粒子群算法所得日運行費用相比采用基本型粒子群算法降低17.0%,其相比系統未優化所得日運行費用降低71.2%。
本文結果可為有效解決農村生物質廢棄物污染問題和實現光伏和風電扶貧政策提供一種方法。
[1] Derakhshandeh S Y, Masoum A S, Deilami S, et al. Coordination of generation scheduling with PEVs charging in industrial microgrids[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3451-3461.
[2] Brandoni C, Renzi M. Optimal sizing of hybrid solar micro-CHP systems for the household sector[J]. Applied Thermal Engineering, 2015, 75: 896-907.
[3] Jeremy R. Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World[M]. New York: Palgrave Macmillan Trade, 2011: 33-72.
[4] 董朝陽,趙俊華,文福拴,等. 從智能電網到能源互聯網:基本概念與研究框架[J]. 電力系統自動化,2014,38(15):1-11. Dong Zhaoyang, Zhao Junhua, Wen Fushuan, et al. From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11. (in Chinese with English abstract)
[5] 孫宏斌,郭慶來,潘昭光. 能源互聯網:理念、架構與前沿展望[J]. 電力系統自動化,2015,39(19):1-8. Sun Xiongbin, Guo Qinglai, Pan Shaoguang. Energy internet: Concept, architecture and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8. (in Chinese with English abstract)
[6] 孫宏斌,郭慶來,潘昭光,等. 能源互聯網:驅動力、評述與展望[J]. 電網技術,2015,39(11):3005-3013. Sun Xiongbin, Guo Qinglai, Pan Shaoguang, et al. Energy internet: driving force, review and outlook[J]. Power System Technology, 2015, 39(11): 3005-3013. (in Chinese with English abstract)
[7] 周孝信,魯宗相,劉應梅,等. 中國未來電網的發展模式和關鍵技術[J]. 中國電機工程學報,2014,34(29):4999-5008. Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008. (in Chinese with English abstract)
[8] 李洋,吳鳴,周海明,等. 基于全能流模型的區域多能源系統若干問題探討[J]. 電網技術,2015,39(8):2230-2237. Li Yang, Wu Ming, Zhou Haiming, et al. Study on some key problems related to regional multi energy system based on universal flow model[J]. Power System Technology, 2015, 39(8): 2230-2237. (in Chinese with English abstract )
[9] 王偉亮,王丹,賈宏杰,等. 能源互聯網背景下的典型區域綜合能源系統穩態分析研究綜述[J]. 中國電機工程學報,2016(12):3292-3306. Wang Weiliang, Wang Dan, Jia Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016(12): 3292-3306. (in Chinese with English abstract)
[10] Keirstead J, Jennings M, Sivakumar A. A review of urban energy system models: Approaches, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 3847-3866.
[11] Jin X, Mu Y, Jia H, et al. Optimal day-ahead scheduling of integrated urban energy systems[J]. Applied Energy, 2016, 180: 1-13.
[12] 田世明,欒文鵬,張東霞,等. 能源互聯網技術形態與關鍵技術[J]. 中國電機工程學報,2015,35(14):3482-3494. Tian Shiming, Luan Wenpeng, Zhang Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14): 3482-3494. (in Chinese with English abstract)
[13] 徐飛,閔勇,陳磊,等. 包含大容量儲熱的電–熱聯合系統[J].中國電機工程學報,2014,34(29):5063-5072. Xu Fei, Min Yong, Chen Lei, et al. Combined electricity-heat operation system containing large capacity thermal energy storage[J]. Proceedings of the CSEE, 2014, 34(29): 5063-5072. (in Chinese with English abstract)
[14] 薛小代,梅生偉,林其友,等. 面向能源互聯網的非補燃壓縮空氣儲能及應用前景初探[J]. 電網技術,2016,40(1):164-171. Xue Xiaodai, Mei Shengwei, Lin Qiyou, et al. Energy internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 164-171. (in Chinese with English abstract)
[15] 井天軍,譚元剛,楊明皓. 農村微電網優化調度模型的建立[J]. 農業工程學報,2012,28(14):127-132. Jing Tianjun, Tan Yuangang, Yang Minghao. Optimal operation model for microgrid in rural areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 127-132. (in Chinese with English abstract)
[16] 薛小代,劉彬卉,汪雨辰,等. 基于壓縮空氣儲能的社區微能源網設計[J]. 中國電機工程學報,2016,36(12):3306-3314. Xue Xiaodai, Liu Binhui, Wang Yuchen, et al. Micro energy network design for community based on compressed air energy storage[J]. Proceedings of the CSEE, 2016, 36(12): 3306-3314. (in Chinese with English abstract)
[17] Liu X Z, Wu J Z, Nick J, et al. Combined analysis of electricity and heat networks[J]. Applied Energy, 2015, 162: 1238-1250.
[18] Qadrdan M, Wu J Z, Jenkins N, et al. Operating strategies for a GB integrated gas and electricity network considering the uncertainty in wind power forecasts[J]. IEEE Transactions on Sustainable Energy, 2014, 5(1): 128-138.
[19] 徐青山,曾艾東,王凱,等. 基于Hessian內點法的微型能源網日前冷熱電聯供經濟優化調度[J]. 電網技術,2016,40(6):1657-1665. Xu Qingshan, Zeng Aidong, Wang Kai, et al. Day-ahead optimized economic dispatching for combined cooling, heating and power in micro energy-grid based on Hessian Interior Point Method[J]. Power System Technology, 2016, 40(6): 1657-1665. (in Chinese with English abstract)
[20] Elsied M, Oukaour A, Gualous H, et al. Energy management and optimization in microgrid system based on green energy[J]. Energy, 2015, 84: 139-151.
[21] 吳雄,王秀麗,別朝紅,等. 含熱電聯供系統的微網經濟運行[J]. 電力自動化設備,2013,33(8):1-6. Wu Xiong, Wang Xiuli, Bie Chaohong, et al. Economic operation of microgrid with combined heat and power system[J]. Electric Power Automation Equipment, 2013, 33(8): 1-6. (in Chinese with English abstract)
[22] 段紹輝,汪偉,劉中勝,等. 含光伏的冷熱電聯供微網系統優化調度方案[J]. 電力系統及其自動化學報,2013,25(4):150-155. Duan Shaohui, Wang Wei, Liu Zhongsheng, et al. Research on optimal scheduling of combined cooling heating and power with photovoltaic power generation[J]. Proceedings of the CSU-EPSA, 2013, 25(4): 150-155. (in Chinese with English abstract)
[23] 王魯浩,李歧強,王桂榮,等. 多可再生能源冷熱電聯供微網系統環境經濟優化調度[J]. 控制與決策,2016,31(5):913-918. Wang Luhao, Li Qiqiang, Wang Guirong, et al. Optimal environmental economic scheduling of combined cooling heating and power microgrid system with multi-renewable energy[J]. Control and Decision, 2016, 31(5): 913-918. (in Chinese with English abstract)
[24] Liu Z, Chen C, Yuan J. Hybrid energy scheduling in a renewable micro grid[J]. Applied Sciences, 2015, 5(3): 516-531.
[25] 魏兵,王志偉,李莉,等. 微型燃氣輪機冷熱電聯產系統經濟性分析[J]. 熱力發電,2007,36(9):1-5. Wei Bing, Wang Zhiwei, Li Li, et al. Analysis of economic efficiency for cold, heat, and electricity triple co-generation system with miniature gas turbine[J]. Thermal Power Generation, 2007, 36(9): 1-5. (in Chinese with English abstract)
[26] Mohamed F A, Koivo H N. Online management of microgrids with battery storage using multiobjective optimization[C]∥Proceedings of 2007 International Conference on Power Engineering, Energy and Electrical Drives. Setubal, Portugal: IEEE, 2007: 231-236.
[27] 龔純,王正林. 精通MATLAB最優化計算[M]. 第3版. 北京:電子工業出版社,2014:306-308.
[28] 趙靜,楊洪海,葉大法,等. 冷熱電聯供與水蓄能耦合利用系統研究[J]. 節能技術,2016,34(2):120-124. Zhao Jing, Yang Honghai, Ye Dafa, et al. Research on energy system based on CCHP coupled with energy storage[J]. Energy Conservation Technology, 2016, 34(2): 120-124. (in Chinese with English abstract)
[29] 甘肅發展和改革委員會. 甘肅省電網銷售電價[EB/OL].(2014-08-08)http://www.gsdrc.gov.cn/content/2016-06-24/35777.html.
[30] 王銳,顧偉,吳志. 含可再生能源的熱電聯供型微網經濟運行優化[J]. 電力系統自動化,2011,35(8):22-27. Wang Rui, Gu Wei, Wu Zhi. Economic and optimal operation of a combined heat and power micro grid with renewable energy resources[J]. Automation of Electric Power Systems, 2011, 35(8): 22-27. (in Chinese with English abstract)
[31] 鮮杏,范傳光,文閃閃,等. 考慮可再生能源隨機性的孤島微網容量優化配置方法[J].武漢大學學報:工學版,2016,49(1):100-104. Xian Xing, Fan Chuanguang, Wen Shanshan, et al. Optimal deployment for island microgrid considering probabilistic factors of renewable energy generations[J]. Engineering Journal of Wuhan University, 2016, 49(1): 100-104. (in Chinese with English abstract)
Scheduling optimization for rural micro energy grid multi-energy flow based on improved crossbreeding particle swarm algorithm
Zhang Xin1,2, Zhang Man1※, Wang Weizhou3, Yang Jianhua1, Jing Tianjun1
(1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2. College of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; 3. State Grid Gansu Provincial Electric Power Research Institute, Lanzhou 730050, China)
There is poor infrastructure and weak power grid in Chinese western rural areas. Photovoltaic (PV) and wind power pro-poor investments do not consider supporting transmission and distribution facilities. The economy of biogas from biomass waste is not good, due to that it is affected by seasonal variations in temperature. Utilizing PV and wind power to supply energy for biogas can improve biomass energy utilization and solve the problem of environmental pollution, while the absorptive capacity of the PV and wind power is increased, and the comprehensive utilization of biomass and renewable energy in place can be achieved. It has important significance for development of new countryside. Based on national PV and wind power poverty relief policy, this paper proposed rural micro energy grid architecture that combines PV system, wind power system, micro turbine, biogas fired boilers, heat recovery boiler, lithium-bromide absorption-type refrigerator, battery storage, heat and cooling storage, air-source heat pumps for cooling exchange, air-source heat pumps for heating exchange, and so on. Mathematical models of micro turbine CCHP (combined cooling heating and power) system, air-source heat pumps system, heat and cooling storage system and battery storage system were built up. With micro energy grid cost in a single day as an objective function, considering electric power balance, heating power balance, cooling power balance, power exchange with electricity grid and the other constraints, the micro energy grid optimal model was established. Because of premature and local optimization problem for particle swarm algorithm, this paper uses dynamic inertia weight crossbreeding particle swarm optimization algorithm for solving.Taking Chinese west village as an example, according to the actual situation, electric and heating power were supplied in the winter, but electric and cooling power were supplied in the summer. Electricity price applied the time of use price issued by the National Development and Reform Commission. Parameters of energy supply equipment and energy storage equipment, time of use price, and equipment maintenance cost per unit power were determined. Forecasted data were given, which combine PV and wind power outputs, electricity heating and cooling load for typical day. Simulation platform was built in MATLAB 2014a. Electric heating and cooling balance curve of typical day was acquired. System running cost comparison of typical day based on improved and basic algorithm was performed. In addition, according to forecasted curve referred to above, parameters of various devices, time of use price and equipment maintenance cost, the un-optimized system running cost was calculated. Results showed that, through the dispatch of each device in the system, the outputs of energy supplying devices were more reasonable, and energy storage devices played a role of load shifting. The daily running cost based on dynamic inertia weight crossbreeding particle swarm optimization algorithm was less than that based on basic particle swarm and un-optimized cost. To sum up, the proposed algorithm is adopted to dispatch various devices in micro energy grid, it can reduce system running cost effectively, and micro energy grid can be operated economically; the correctness of the models and algorithms can be proved.
optimization; algorithms; power; rural micro energy grid; energy internet; crossbreeding particle swarm algorithm; cooling heating power and gas multi-energy flow
10.11975/j.issn.1002-6819.2017.11.020
TM 926
A
1002-6819(2017)-11-0157-08
張 新,張 漫,王維洲,楊建華,井天軍. 基于改進雜交粒子群算法的農村微能網多能流優化調度[J]. 農業工程學報,2017,33(11):157-164.
10.11975/j.issn.1002-6819.2017.11.020 http://www.tcsae.org
Zhang Xin, Zhang Man, Wang Weizhou, Yang Jianhua, Jing Tianjun. Scheduling optimization for rural micro energy grid multi-energy flow based on improved crossbreeding particle swarm algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 157-164. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.020 http://www.tcsae.org
2016-11-27
2017-04-26
國家重點研發計劃項目課題(2016YFB0900101);內蒙古自然科學基金項目(2016MS0515)
張 新,男,內蒙古包頭人,博士生,講師,研究方向為分布式發電和能源綜合利用技術。北京 中國農業大學信息與電氣工程學院,100083。Email:zhangxin19861986@126.com
※通信作者:張 漫,女,北京人,教授,博士,博士生導師,研究方向為農業電氣化與自動化。北京 中國農業大學信息與電氣工程學院,100083。Email:cauzm@cau.edu.cn