郭志明,陳全勝,張 彬,王慶艷,歐陽琴,趙杰文
?
果蔬品質手持式近紅外光譜檢測系統設計與試驗
郭志明1,2,陳全勝1※,張 彬1,王慶艷2,歐陽琴1,趙杰文1
(1. 江蘇大學食品與生物工程學院,鎮江 212013;2. 國家農業智能裝備工程技術研究中心,北京 100097)
為滿足果蔬加工過程快速檢測和質量控制的實際需求,研發近紅外光譜技術的低成本、實用化、小型化的果蔬品質手持式檢測系統。在分析當前近紅外光譜實用化過程的瓶頸問題的基礎上,提出果蔬品質的手持式檢測系統設計方案,闡述了硬件系統選擇和軟件系統構建,介紹了檢測系統的工作原理;選用近紅外微機電系統的數字微鏡器件作為分光元件,以單點探測器獲取檢測信息,從而實現光譜檢測系統的微型化設計和系統成本的顯著降低。以檢測番茄為例,利用設計的手持式檢測系統,獲取番茄900~1 700 nm范圍的近紅外光譜,利用先選擇特征波段再優選波長的建模策略,分別建立了番茄中番茄紅素和可溶性固形物含量的定量檢測模型;可溶性固形物含量模型的預測相關系數和預測均方根誤差分別為0.899和0.133%;番茄紅素模型的預測相關系數和預測均方根誤差分別為0.886和2.508 mg/kg。研究表明該系統能夠滿足果蔬品質的快速無損檢測要求,可為實用化、小型化的手持式光譜檢測儀設計和開發提供參考。
無損檢測;光譜分析;農產品;近紅外光譜;手持式檢測系統;數字微鏡器件;果蔬品質
果蔬產業是國民經濟的基礎性、戰略性支柱產業,在調整農業產業結構、延伸農產品產業鏈、增加農民收入等方面發揮了重要作用[1-2]。中國已穩居世界水果和蔬菜第一大生產國和消費國,果蔬作為民生必需品受到人民群眾的極大關注和政府部門的高度重視[3]。傳統的化學方法費時、費力、檢測成本高且使用化學試劑,造成資源的嚴重浪費,無法滿足果蔬生產、流通、控制等環節快速檢測的需要,已成為制約果蔬業健康快速發展的瓶頸之一。為保證果蔬品質,提高國際競爭力,果蔬品質快速無損檢測技術與設備亟待開發。
農產品光電檢測技術具有高通量、多指標同時檢測的優勢[4-7]。其中近紅外光譜分析技術作為一種綠色分析技術,具有快速、無損傷、可在線的優點,成為果蔬品質快速無損檢測的首選技術[8-12]。目前的果蔬品質近紅外無損檢測儀體積大、質量大、攜帶不便[13-16],同時價格昂貴,如使用光譜儀一般采用線陣探測器,價格高[17-19],無法在食品、農產品加工檢測行業推廣應用。因此,果蔬品質小型化、低成本、實用化的檢測系統具有廣闊的應用前景[20-22]。另外,作為實用化的小型檢測設備必須具有低功耗的特點,才能滿足原位、離線等多種工況的操作使用要求。
針對果蔬物料組織結構和光傳輸特性,優選近紅外光譜模塊,進行光路結構設計和軟硬件開發,研究果蔬主要品質指標快速、高精度、無損傷、智能化的檢測與評價方法,研制近紅外光譜技術的低成本、實用化、小型化的果蔬品質手持式檢測系統,對于保障果蔬品質、實現果蔬加工增值、增強中國果蔬的國際競爭力具有重要意義。
果蔬品質手持式近紅外光譜檢測系統硬件主要包括微型近紅外光譜儀、微型光源、控制與通訊模塊、移動電源、橡膠墊圈和殼體,如圖1所示。本研究設計的手持式近紅外光譜檢測系統主要用于球形和類球形果蔬的品質檢測。果蔬質地軟易損傷,檢測時系統通過前置的軟橡膠墊圈接觸果蔬,同時將果蔬與光譜儀間的空間封閉,避免雜散光的干擾。工作時光源以特定角度照射到果蔬表面,光經果蔬內部傳輸后由光譜儀獲取體反射光,光信號轉化為電信號后由控制電路板傳輸到掌上電腦(personal digital assistant, PDA)進行顯示和存儲。檢測時通過觸控開關,打開光源的同時觸發光譜儀采集果蔬的漫反射光譜,用于檢測果蔬的品質。
1.1 微型近紅外光譜模塊
近紅外光譜是分子振動的合頻和倍頻吸收,可以獲得待測對象的物理結構和化學組分信息,在果蔬品質檢測方面具有廣闊的應用潛力[23-24]。現有光譜儀如光柵掃描式、傅里葉變換式、聲光可調濾光器式,雖然檢測精度較高,但儀器成本高、體積大,限制了實際生產中的應用。隨著新型光譜儀微機電系統(micro electro- mechanical system, MEMS)的研發逐漸成熟,發展了基于MEMS技術的集成度高、體小結構堅固的新型便攜式近紅外光譜儀,MEMS技術利于大規模生產且降低儀器的成本。當前小型近紅外光譜儀一般采用固定光柵結合線陣探測器的方式獲取近紅外信號,價格有一定程度的降低但仍無法滿足低成本、實用化的實際需求,且存在信噪比低抗干擾能力弱的問題。
數字微鏡器件(digital micromirror device,DMD)是集光處理與MEMS于一體的器件,因具有高分辨率、高亮度、高對比度、高可靠性、數字控制和響應時間短等優點,廣泛應用于數字光處理(digital light procession,DLP)系統中[25-26]。DMD由幾十萬或數百萬個微型數字可編程鏡片組成,微鏡固定在軛上,通過電極對微鏡產生靜電吸引,實現微鏡的轉動,進而控制每個微鏡來產生特定模式的光信號獲取。因DMD是數字可編程的,可以根據用戶需要設置光譜分辨率和波長范圍,調整積分時間,均衡光通量,可將信噪比提高到30 000:1以上,獲得比傳統光譜儀更快、更精準的結果。
在農業和食品工業中使用的近紅外光譜儀一般選用硅探測器,因為均采用線陣探測器時,配置硅探測器的近紅外光譜儀的價格為配置銦鎵砷探測器價格的1/5左右。本文選用DMD分光器件配置單點銦鎵砷探測器研發的近紅外光譜儀,成本僅為配置線陣硅探測器的近紅外光譜儀的1/3左右。采用DMD設計近紅外光譜儀,配置單點探測器,可避免使用高昂的線性探測器陣列的同時完成高性能的光譜儀。另外,DMD近紅外模塊具有微型化的特點。因此,選用DMD技術研發低成本、實用化、小型化、高精度的果蔬品質手持式檢測系統具有技術優勢和價格優勢。
短波近紅外(700~1 100 nm)是分子振動光譜三級和四級或更高級倍頻的吸收,光穿透能力較強,但吸收較弱;長波近紅外(1 000~2 500 nm)是分子振動光譜合頻、一級倍頻和二級倍頻的吸收譜帶,吸收峰較強。另外,前期研究[27]表明,果蔬表面的顏色和果肉的顏色在短波近紅外區對檢測精度具有顯著性影響,而對長波近紅外光譜影響較小。綜合性能和價格因素,本研究選擇美國Texas Instruments公司的DLP2010NIR DMD模塊用于系統設計。近紅外光譜儀內部光路與信號傳輸過程如圖2所示。通過果蔬樣本的漫反射光,經入射狹縫進入光譜儀,首先通過準直透鏡和885 nm的長波通濾光片,然后經衍射光柵反射將光分成若干波長下的光,再經聚焦透鏡投射到DMD上;通過嵌入式處理器精確控制DMD中的每一個微鏡,在每一瞬間僅有特定波長的光傳輸到探測器。選用InGaAs單點探測器獲取光電信號,同時配置半導體制冷器以提高信號的精度和穩定性。另外,在狹縫前設有聚焦透鏡,可有效獲取2.5 mm視窗內的漫反射光;通過調整狹縫的大小可以調節光譜分辨率和信噪比。通過試驗發現,所設計的系統可有效獲取900~ 1 700 nm范圍的近紅外光譜。

1. 果蔬樣本 2. 光源 3. 狹縫 4. 準直透鏡 5. 衍射光柵 6. 聚焦透鏡 7. 數字微鏡器件 8. 采集透鏡 9. 單點探測器 10. 半導體制冷器 11. 信號放大器 12. 模數轉換器 13. 嵌入式處理器
1.2 微型光源
近紅外光譜檢測系統需要提供寬波段的光源,一般選用鹵鎢燈。手持式檢測系統設計中光源在滿足基本能量和強度要求的前提下要求尺寸小、功耗低。在低功耗微型光源方面,設置前置透鏡可以將光有效聚集到特定方向,在光源前部可以獲得10倍于同等功耗的普通光源的光強度。光源的這種設計發散性得到收斂,具有一定的焦距和工作平面,在工作面上光分布需要優化調試,包括光強度、光照均勻性和一致性等。光源首選C-6結構的細鎢絲,具有低電壓高電流的特點,采用高品質玻璃封裝,色溫2 200 K,使用壽命25 000 h。本研究選用美國ILT公司的L1005型前置透鏡微型精密光源。近紅外光譜的采集設計為反射模式,2個光源對稱布局,光源的主軸與入射狹縫平面呈40°夾角,光投射到果蔬表面進入內部,然后光經體反射傳輸到光譜儀,可以避免無效鏡面反射光進入光譜儀。
1.3 控制與通訊模式
手持式近紅外光譜檢測系統中DMD的控制的是獲取高質量光譜的關鍵,由DLPC 150微控制器可編程實現DLP2010NIR DMD的精確控制。單點InGaAs探測器的信號經低信噪比差分放大器,傳到串行外設接口的模數轉換器,最后傳到嵌入式處理器,如圖2所示。嵌入式處理器設有低能耗藍牙模塊和微型USB連接器,在后續軟件開發過程,開發雙通訊模式,滿足不同用戶的多功能需求。
1.4 檢測軟件設計
根據檢測的需要,自行開發果蔬品質手持式近紅外光譜檢測軟件。軟件設計過程采取模塊化結構設計,即根據功能要求將整個系統劃分為不同的功能模塊,便于維護和功能擴展。果蔬品質檢測模型內置于檢測軟件中,采用多線程編程技術實現,可以一機多用,用于檢測多種果蔬。根據不同用戶的需要,基于Windows系統和Android平臺開發專用軟件,實現USB和藍牙雙通訊功能。程序初始化完成,打開開始采集即進入工作狀態,操作簡單。
鑒于番茄具有水果和蔬菜的雙重屬性,具有一定的代表性,已有研究表明,近紅外光譜檢測番茄的品質是可行[28-29]。本研究選擇番茄為研究對象驗證設計的果蔬品質手持式近紅外光譜檢測系統的性能。
2.1 番茄品質測定
番茄中的可溶性固形物含量(soluble solids content, SSC)是反映番茄主要營養物質含量重要指標之一,也以其作為評價番茄及其制品品質的重要指標之一。番茄SSC測定參考GB12295[30]采用折射儀法,測量儀器為WYA-2S數字阿貝折射儀。取番茄上對應光譜采集的部位,經多層紗布過濾擠汁滴在折光儀鏡面,測定溫度修正為20 ℃的白利度(%)。
番茄紅素是成熟番茄的主要色素,也是評價番茄品質等級的關鍵指標。番茄紅素含量(lycopene content, LC)的測定參考GB 28316-2012[31],用二氯甲烷浸提番茄紅素,溶液中加入2,6-二叔丁基對甲酚用來防止番茄紅素氧化。用紫外-可見光分光光度計在472 nm的最大吸收波長處測定吸光度,計算番茄紅素的質量分數,單位為mg/kg。
近紅外光譜具有多組分同時檢測的特點,本研究采用手持式近紅外光譜檢測系統同時檢測番茄中的可溶性固形物含量和番茄紅素。測試番茄樣本共78個,按照約2∶1的比例劃分為校正集與預測集,品質指標的測定結果統計如表1所示,發現預測集樣本的統計結果與校正集樣本的范圍、均值和標準偏差相當,樣本選擇具有一定的達標性。

表1 番茄品質測定結果
2.2 番茄近紅外光譜采集與分析
番茄品質手持式近紅外光譜檢測系統經優化采集參數,設置波長范圍為900~1 700 nm,光譜分辨率為4.68 nm,掃描點數400,掃描次數為3。78個番茄樣本光譜采集完成獲得78×400的光譜矩陣,原始近紅外光譜如圖3所示。
從圖3可以看出,每條光譜之間都是相似的變化趨勢,無法直接進行分組或分類。因番茄具有很高的含水率,在1 450 nm有很強的水分吸收峰(水分一倍頻的伸縮振動),在970 nm是水分的二倍頻吸收峰。在1 120~1 260 nm對應CH鍵的二倍頻吸收譜帶,在1 350~1 480 nm是CH鍵、OH鍵和NH鍵一倍頻的復合吸收[32]。其中番茄中的番茄紅素是一種不飽和烯烴化合物,由11個不飽和共軛雙鍵和兩個非共軛不飽和雙鍵組成的長鏈脂肪烴[33]。獲取的900~1 700 nm范圍的近紅外光譜包括CH鍵一倍頻和二倍頻吸收的信息,可以用來預測番茄紅素的含量,同樣也可預測番茄中的可溶性固形物含量。

注:A=log(1/R)為近紅外光譜的吸光度,其中R為近紅外光譜的反射率。
近紅外光譜采集過程會夾入大量基線漂移、高頻隨機噪聲、光散射等噪聲信息,導致近紅外光譜與樣品內有效成分含量間關系受到干擾,直接影響模型的魯棒性。在比較多種光譜預處理方法的基礎上,發現標準正態變量變換(standard normal variate transformation, SNV)預處理方法可以提高模型的穩定性。究其原因是SNV方法可以消除物料表面光散射及光程變化對漫反射光信號的影響。
2.3 番茄品質模型的建立
考慮到近紅外光譜帶重疊、吸收信號弱的特點,在番茄品質模型的建立過程,首先選擇特征波段,去除無信息變量和相關度不高的波段,然后再利用特征波長選擇方法優選少量的特征波長,消除光譜數據內部存在的共線性關系,降低模型計算量,同時簡化模型,提高模型的質量。本研究先利用聯合區間偏最小二乘法(synergy internal partial least square, siPLS)選擇特征波段,再利用連續投影算法(successive projections algorithm, SPA)選擇特征波長[34-35],分別建立番茄可溶性固形物含量和番茄紅素的定量分析模型。在模型建立過程中,以校正相關系數(correlation coefficient of calibration,R)、預測相關系數(correlation coefficient of prediction,R)、校正均方根誤差(root mean square error of calibration, RMSEC)和預測均方根誤差(root mean squared error of prediction, RMSEP)評價模型性能。
應用siPLS建模時,將整個光譜區域劃分為20個子區間,聯合4個子區間優選特征波段,然后在選擇的特征波段上利用連續投影算法選擇特征波長。對可溶性固形物含量,優選9個特征波長,分別是1 148.85、1 298.43、1 141.73、1 319.80、1 123.92、1 373.22、1 134.61、1 355.42和1 391.03 nm。可溶性固形物含量選擇的特征譜區和優選的特征波長如圖4a所示。對番茄紅素,優選11個特征波長,分別是1 141.73、1 131.05、1 138.17、1 198.71、 1 159.54、1 145.29、1 120.36、1 148.85、1 319.80、1 113.24和1 348.29 nm,番茄紅素模型選擇的特征譜區和優選的特征波長如圖4b所示。

圖4 可溶性固形物含量和番茄紅素的優選的光譜區間和選擇的特征波長
番茄可溶性固形物含量和番茄紅素模型建立結果見表2,所建立的聯合區間偏最小二乘模型選用的變量,對SSC和LC,從全譜的400個變量分別減少為79個和81個。采用連續投影算法優選更少的變量而獲得了與聯合區間偏最小二乘法相當的預測精度。可見前向循環變量選擇的連續投影算法可以從共線性的光譜變量中有效提取信息。可見采用先選擇特征光譜波段再優選特征波長的策略可有效檢測番茄的品質指標。

表2 番茄品質指標不同校正模型建立結果
1)根據果蔬快速無損檢測低成本、實用化和小型化的實際產業需求,構建了手持式近紅外光譜檢測系統。采用數字微鏡器件結合點陣探測器的組合方式在保證精度的同時顯著降低了儀器成本,同時優化設計了微型光源、控制與通訊模塊,開發了雙通訊模式的專用檢測軟件,有效獲取900~1 700 nm的近紅外光譜。
2)選擇番茄為果蔬的代表,果蔬品質手持式近紅外光譜檢測系統經優化采集參數,對采集的光譜進行解析,提取1 120~1 480 nm范圍的光譜可以表征番茄的可溶性固形物含量和番茄紅素等品質指標。
3)研究先采用聯合區間偏最小二乘法選擇特征波段,再利用連續投影算法選擇特征波長的模型簡化策略,分別建立番茄可溶性固形物含量和番茄紅素的定量分析模型。可溶性固形物含量模型的預測相關系數R和預測均方根誤差RMSEP分別為0.899和0.133%;番茄紅素模型的預測相關系數Rp和預測均方根誤差RMSEP分別為0.886和2.508 mg/kg。
研究結果表明,研發的手持式近紅外光譜檢測系統可以實現果蔬主要品質指標的快速無損檢測。研究為低成本、實用化、小型化近紅外光譜檢測系統設計提供方法參考。
[1] Zhou J, Kai L I, Liang Q. Food safety controls in different governance structures in China’s vegetable and fruit industry[J]. Journal of Integrative Agriculture, 2015, 14(11): 2189-2202.
[2] 王偉新,向云,祁春節. 中國水果產業地理集聚研究:時空特征與影響因素[J]. 經濟地理,2013,33(8):97-103. Wang Weixin, Xiang Yun, Qi Chunjie. Study on geographic agglomeration of fruit industry in china: Spatial-temporal characteristics and affecting factors[J]. Economic Geography, 2013, 33(8): 97-103. (in Chinese with English abstract)
[3] Ernest Liu K, Chang H H, Chern W S. Examining changes in fresh fruit and vegetable consumption over time and across regions in urban China[J]. China Agricultural Economic Review, 2011, 3(3): 276-296.
[4] Zhao Jiewen, Chen Quansheng, Saritporn Vittayapadung, et al. Determination of apple firmness using hyperspectral imaging technique and multivariate calibrations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 226-231.
[5] Blakey R J. Evaluation of avocado fruit maturity with a portable near-infrared spectrometer[J]. Postharvest Biology and Technology, 2016, 121: 101-105.
[6] Guo W, Fang L, Liu D, et al. Determination of soluble solids content and firmness of pears during ripening by using dielectric spectroscopy[J]. Computers and Electronics in Agriculture, 2015, 117: 226-233.
[7] 傅霞萍,應義斌. 基于NIR和Raman光譜的果蔬質量檢測研究進展與展望[J]. 農業機械學報,2013,44(8):148-164. Fu Xiaping, Ying Yibin. Application of NIR and Raman spectroscopy for quality and safety inspection of fruits and vegetables: a review[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 148-164. (in Chinese with English abstract)
[8] Xie L, Wang A, Xu H, et al. Applications of near-infrared systems for quality evaluation of fruits: a review[J]. Transactions of the ASABE, 2016, 59(2): 399-419.
[9] 褚小立,陸婉珍. 近五年我國近紅外光譜分析技術研究與應用進展[J]. 光譜學與光譜分析,2014,34(10):2595-2605. Chu Xiaoli, Lu Wanzhen. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2595-2605. (in Chinese with English abstract)
[10] Fernández-Espinosa A J. Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time[J]. Talanta, 2016, 148: 216-228.
[11] 劉燕德,吳明明,孫旭東,等. 黃桃表面缺陷和可溶性固形物光譜同時在線檢測[J]. 農業工程學報,2016,32(6):289-295. Liu Yande, Wu Mingming, Sun Xudong, et al. Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible near infrared transmittance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 289-295. (in Chinese with English abstract)
[12] 郭志明,黃文倩,陳全勝,等. 蘋果腐心病的透射光譜在線檢測系統設計及試驗[J]. 農業工程學報,2016,32(6):283-288. Guo Zhiming, Huang Wenqian, Chen Quansheng, et al. Design and test of on line detection system for apple core rot disease based on transmitted spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 283-288. (in Chinese with English abstract)
[13] Ruslan R, Ehsani R, Lee W S. Quantification of total soluble solids and titratable acidity for citrus maturity using portable vis-NIR spectroradiometer[J]. Applied Engineering in Agriculture, 2012, 28(5): 735-743.
[14] Paula J T, Faria J T V, Marcos V, et al. Physicochemical characteristics and bioactive compounds in tomato fruits harvested at different ripening stages[J]. Horticultura Brasileira, 2015, 33(4): 434-440.
[15] Yuan L, Cai J, Sun L, et al. Nondestructive measurement of soluble solids content in apples by a portable fruit analyzer[J]. Food Analytical Methods, 2016, 9(3): 785-794.
[16] Cirilli M, Bellincontro A, Urbani S, et al. On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device[J]. Food chemistry, 2016, 199: 96-104.
[17] Pérez-Marín D, Paz P, Guerrero J E, et al. Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums[J]. Journal of food engineering, 2010, 99(3): 294-302.
[18] 樊書祥,黃文倩,李江波,等. 特征變量優選在蘋果可溶性固形物近紅外便攜式檢測中的應用[J]. 光譜學與光譜分析,2014,34(10):2707-2712. Fan Shuxiang, Huang Wenqian, Li Jiangbo, et al. Application of characteristic NIR variables selection in portable detection of soluble solids content of apple by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2707-2712. (in Chinese with English abstract)
[19] Kafle G K, Khot L R, Jarolmasjed S, et al. Robustness of near infrared spectroscopy based spectral features for non- destructive bitter pit detection in honeycrisp apples[J]. Postharvest Biology and Technology, 2016, 120: 188-192.
[20] Yu X, Lu Q, Gao H, et al. Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit[J]. Journal of Near Infrared Spectroscopy, 2016, 24(1): 69-76.
[21] Civelli R, Giovenzana V, Beghi R, et al. A simplified, light emitting diode (LED) based, modular system to be used for the rapid evaluation of fruit and vegetable quality: Development and validation on dye solutions[J]. Sensors, 2015, 15(9): 22705-22723.
[22] Beghi R, Giovenzana V, Civelli R, et al. Setting-up of a simplified handheld optical device for decay detection in fresh-cut Valerianella locusta L[J]. Journal of Food Engineering, 2014, 127: 10-15.
[23] Dos Santos C A T, Lopo M, Páscoa R N M J, et al. A review on the applications of portable near-infrared spectrometers in the agro-food industry[J]. Applied spectroscopy, 2013, 67(11): 1215-1233.
[24] Sánchez M T, De la Haba M J, Pérez-Marín D. Internal and external quality assessment of mandarins on-tree and at harvest using a portable NIR spectrophotometer[J]. Computers and electronics in agriculture, 2013, 92: 66-74.
[25] Spencer A P, Spokoyny B, Ray S, et al. Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing[J]. Nature Communications, 2016, 7: 10434.
[26] Rueda H, Arguello H, Arce G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2015, 32(1): 80-89.
[27] Guo Z M, Huang W Q, Peng Y K, et al Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple[J]. Postharvest Biology and Technology, 2016, 115: 81-90.
[28] Ding X, Guo Y, Ni Y, et al. A novel NIR spectroscopic method for rapid analyses of lycopene, total acid, sugar, phenols and antioxidant activity in dehydrated tomato samples[J]. Vibrational Spectroscopy, 2016, 82: 1-9.
[29] Ayvaz H, Sierra-Cadavid A, Aykas D P, et al. Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis[J]. Food Control, 2016, 66: 79-86.
[30] 水果、蔬菜制品可溶性固形物含量的測定--折射儀法,GB12295-1990[S].
[31] 食品安全國家標準食品添加劑番茄紅,GB 28316-2012 [S]. 北京:中國標準出版社,2012.
[32] Zhu Q, He C, Lu R, et al. Ripeness evaluation of ‘Sun Bright’tomato using optical absorption and scattering properties[J]. Postharvest Biology and Technology, 2015, 103: 27-34.
[33] De Nardo T, Shiroma-Kian C, Halim Y, et al. Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy[J]. Journal of agricultural and food chemistry, 2009, 57(4): 1105-1112.
[34] Wu D, He Y, Nie P, et al. Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice[J]. Analytica Chimica Acta, 2010, 659(1): 229-237.
[35] Soares S F C, Gomes A A, Araujo M C U, et al. The successive projections algorithm[J]. TrAC Trends in Analytical Chemistry, 2013, 42: 84-98.
Design and experiment of handheld near-infrared spectrometer for determination of fruit and vegetable quality
Guo Zhiming1,2, Chen Quansheng1※, Zhang Bin1, Wang Qingyan2, Ouyang Qin1, Zhao Jiewen1
(1.212013,;2.100097,)
Determination of internal quality of fruit and vegetable with a suitable technique is crucial for processing detection and quality control. While substantial progress has recently been made in the miniaturization of near-infrared (NIR) spectrometers, there remains continued interest from end-users and product developers in pushing the technology envelope toward even smaller and lower cost analyzers. The potential of these instruments to revolutionize on-site applications can be realized only if the reduction in size does not compromise performance of the spectrometer beyond the practical need of a given application. In this paper, the working principle of a novel, extremely miniaturized NIR spectrometer is presented. The ultra-compact spectrometer relies on digital micromirror device (DMD) technology for the light dispersing element. DMD is a two-dimensional array of electro-mechanical mirror elements whose surface normal angles can be controlled. Digitally programmable DMD can set the spectral resolution and wavelength range according to user needs, adjust the integration time, and adapt the luminous flux. The system design with DMD and single-pixel InGaAs detector can significantly reduce the cost, and meanwhile ensure the detect precision. The DLP (digital light procession) NIRscan module is used as spectrometer optical engine in the miniaturized system. In the specific implementation, a sample is placed against the sapphire front window of the reflectance head. During a scan, the sample absorbs a specific amount of NIR light and diffusely reflects the non-absorbed light into the system. The illuminating lamps are designated as lens-end lamps because the front end of the glass bulb is formed into a lens that directs more lights from the filament to the sample test region. The collection lens gathers collimated light from a 2.5 mm diameter region at the sample window. The handheld system supports the following modes of operation: USB (Universal Serial Bus) connection and Bluetooth for 2 communication channels. Special analyzer software was developed for quality inspection based on multithread programming technology. The advantages of this software are presented by the process of modular design, including software system initialization, information communication, information interaction, spectral data acquisition and processing, spectral curve real-time display, quality index calculation, and statistics and save of detection results. Miniaturized handheld NIR spectrometer was developed and used to acquire reflectance spectra from fruit and vegetable samples in the wavelength range of 900-1 700 nm. In order to verify the design and performance, tomato was selected as research object. A total of 78 tomato samples were randomly divided into 2 subsets. The first subset was called the calibration set with 52 samples and used for building model, while the other one was called the prediction set with 26 samples and used for testing the robustness of the model. In the process of model establishment, a simplified strategy was proposed. Firstly, characteristic spectrum bands were selected to remove the uninformative variable and the low-correlation band. And then feature wavelengths were optimized to eliminate the collinearity relationship in the spectral data. Finally, simplified model was built, which had good robustness and stability. Synergy internal partial least square (siPLS) and successive projections algorithm (SPA) were sequentially applied to calibrate models. The siPLS was applied to select an optimized spectral interval and an optimized combination of spectral regions selected from informative regions in model calibration. The subsequent application of SPA to this reduced domain could lead to an efficient and refined model. The measurement results of the final model were achieved as follows: correlation coefficient (R) was 0.899 and root mean square error of prediction (RMSEP) was 0.133% for soluble solid content in tomato, andRwas 0.886 and RMSEP was 2.508 mg/kg for lycopene content in tomato. The results will provide the method reference for rapid, non-destructive, and on-site detection technology and equipment of fruit internal quality.
nondestructive detection; spectrum analysis; agriculture products; near infrared spectroscopy; handheld detection system; digital micromirror device; fruit and vegetable quality
10.11975/j.issn.1002-6819.2017.08.033
TP274.4;O433.4
A
1002-6819(2017)-08-0245-06
2016-08-23
2016-11-06
國家自然科學基金(31501216);國家科技支撐計劃(2015BAD19B03);中國博士后科學基金(2016M600379);江蘇省高校自然科學研究面上項目(16KJB550002);江蘇省博士后科研資助計劃(1601080B);食品安全大數據技術北京市重點實驗室開放課題(BKBD- 2016KF06);江蘇大學高級人才基金(15JDG169)
郭志明,博士,講師,主要從事食品品質安全的光電檢測技術與裝備研究。鎮江 江蘇大學食品與生物工程學院,212013。 Email:zhmguo@126.com
陳全勝,教授,博士生導師,主要從事農產品無損檢測技術研究。鎮江 江蘇大學食品與生物工程學院,212013。Email:qschen@ujs.edu.cn
郭志明,陳全勝,張 彬,王慶艷,歐陽琴,趙杰文. 果蔬品質手持式近紅外光譜檢測系統設計與試驗[J]. 農業工程學報,2017,33(8):245-250. doi:10.11975/j.issn.1002-6819.2017.08.033 http://www.tcsae.org
Guo Zhiming, Chen Quansheng, Zhang Bin, Wang Qingyan, Ouyang Qin, Zhao Jiewen. Design and experiment of handheld near-infrared spectrometer for determination of fruit and vegetable quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 245-250. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.033 http://www.tcsae.org