楊 琦,葉 豪,黃 凱,查元源,史良勝※
?
利用無人機影像構建作物表面模型估測甘蔗LAI
楊 琦1,葉 豪1,黃 凱2,查元源1,史良勝1※
(1. 武漢大學水資源與水電工程科學國家重點實驗室,武漢 430072;2. 廣西壯族自治區水利科學研究院,南寧 530023)
為探討從作物表面模型(crop surface models,CSMs)中提取株高來估算糖料蔗葉面積指數(leaf area index,LAI)的可行性,該文采用無人機-RGB高清數碼相機構成的低空遙感平臺,以廣西糖料蔗為研究對象,采集了糖料蔗全生育期的高清數碼影像,分別在有無地面控制點條件下建立各生育期CSMs并提取株高。此外,該文利用高清數碼影像計算了6種可見光植被指數并建立LAI估算模型,用以對比從CSMs提取的株高對LAI的估算效果。結果表明:全生育期CSMs提取的株高與實測株高顯著相關(<0.01),株高預測值與實測值高度擬合(2=0.961 2,RMSE=0.215 2)。選取的6種可見光植被指數中,綠紅植被指數對糖料蔗伸長末期以前的LAI的估測效果最好(2=0.779 0,RMSE=0.556 1,MRE=0.168 0)。相同條件下,株高對LAI有更高的估測精度,其中CSMs提取的株高估測效果優于地面實測株高,預測模型2=0.904 4,RMSE=0.366 2,MRE=0.124 3。研究表明,使用無人機拍攝RGB影像來提取株高并運用于糖料蔗重要生育期LAI的估算是可行的,CSMs提取的株高擁有較高的精度。該研究可為大區域進行精準快速的農情監測提供參考。
遙感;無人機;農作物;作物表面模型;糖料蔗;數碼影像;株高;葉面積指數
糖料蔗是中國最主要的糖料作物,由其作為原料生產的食用糖占中國總產量的90%以上[1]。葉面積指數(leaf area index,LAI)是反映作物長勢、冠層結構以及預測作物生物量的重要參數之一[2-3],指的是單位面積上植株單面葉片面積的總和。其不僅能反映植被的覆蓋及長勢,還與植物蒸騰、能量交換、水熱平衡等過程息息相關[4-6]。LAI的地面測量方法分為直接測量法和間接估算法[7]。直接測量法雖然精度高,但往往會對作物造成損傷;間接估算法通過無損地獲取冠層孔隙率來間接估算LAI[8],是被目前廣泛采用的地面測量法。
然而,LAI地面測量法無法滿足大區域測量的需要。隨著觀測技術的快速發展,基于遙感的農情監測能夠快速、準確地估算作物的生理指標,已經成為人們研究的焦點[9-10]。Chen等[11]基于Landsat衛星的TM影像計算歸一化植被指數(normalized difference vegetation index,NDVI)來估測森林的LAI;Colombo等[12]利用IKONOS衛星數據證明了紋理指數與植被指數結合的多元回歸模型對LAI有更好的估算精度。Wu等[13]使用EO-1 Hyperion衛星的高光譜數據證明了紅邊波段對LAI有較強的估算能力。衛星遙感雖然數據易得,但存在著分辨率不夠高、時域長、易受大氣干擾等問題[14]?;跓o人機的低空遙感技術可以實時獲取高分辨率的光譜影像,機動性強,并且由于飛行高度低,受到的大氣干擾較小[15-17]。無人機搭載高光譜、多光譜相機構成的遙感平臺可快速、便捷地估算研究區域的作物生理指標[18-21],但昂貴的機載高光譜和多光譜傳感器制約了無人機遙感平臺的發展。
與此同時,RGB高分辨率數碼相機作為一種廉價、成熟的設備引起了國內外學者的關注[22]。通過在無人機上搭載RGB高分辨率數碼相機可以獲取試驗區的高清數碼影像,從影像中提取紅、綠、藍通道的亮度值(digital number,DN)可計算各種可見光植被指數。優選后的可見光植被指數對作物葉片氮含量、LAI、生物量等指標具有較好的估算能力[23-25]。航拍獲取的高清數碼影像還可以使用動態結構算法[26]建立三維立體的作物表面模型(crop surface models,CSMs),通過作物表面模型可以進一步提取株高。株高是作物重要的生長指標,其與生物量、LAI、產量等有顯著的相關關系[27-28]。近年來,許多學者基于無人機獲取作物表面模型來提取株高的方法進行了許多研究。Zarco-Tejada等[29]使用固定翼飛機搭載RGB數碼相機估算橄欖樹高,與實測結果對比決定系數2=0.83;Bendig等[25,30-31]基于無人機搭載數碼相機平臺獲取大麥株高進行了多次研究,證實了從CSMs提取的株高具有良好的精度,并建立了大麥株高與生物量的估算模型。然而,國內外對于CSMs提取株高來估算LAI的研究鮮有報道。本文以糖料蔗為研究對象,使用無人機搭載高分辨率RGB數碼相機構成低空遙感農情監測系統,對糖料蔗全生育期進行監測,以探討通過CSMs提取株高來估算LAI的可行性及效果。
1.1 試驗區概況
試驗區位于廣西崇左市江州區,偏向熱帶季風氣候,海拔高度180 m。崇左市位于廣西西南部,為喀斯特地貌特征,以中低丘陵和孤峰平原為主。夏季長冬季短,全年雨量充沛,氣候溫暖濕潤,適宜糖料蔗的種植。試驗區共設有60個小區,每個小區面積64 m2(8 m′8 m),種植密度2.5′104株/hm2,行距1.0 m,小區間過道寬2.0 m。設置0、104、166、207、248 kg/hm2(分別對應N1、N2、N3、N4、N5)共5個施氮水平,20個小區為一組,設置3個重復處理。每個重復處理施氮布局相同,具體試驗小區布置見圖1。

注:0、104、166、207、248 kg·hm–2分別對應N1、N2、N3、N4、N5共5個施氮水平。
1.2 地面數據觀測
糖料蔗株高地面觀測方法為:于每個小區2條對角線上的1/3、2/3處選取4個觀測點,使用伸縮尺測量觀測點四周若干株糖料蔗第一片完全展開葉的高度,取平均值作為一個小區的平均株高。采用LAI-2200冠層分析儀(美國LI-COR公司生產)進行無損傷的LAI測量,測量時間段控制在云層厚度均勻的陰天或者是晴天的日出后2 h或日落前2 h,目的是不讓陽光直射到分析儀的鏡頭內。每個小區先測量一個冠層頂部的輻射值再測量4個標記點處冠層下的輻射值,所得的LAI取平均即作為整個小區的LAI。
1.3 無人機平臺與遙感數據獲取
試驗采用八旋翼電動無人機(S1000, 大疆公司生產),無人機凈質量約4 kg,最大載質量約6 kg,空載續航約18 min。在無人機遙感平臺上搭載 SONY DSC-QX100(日本SONY公司生產)數碼相機,傳感器(CMOS)像素為2100萬,尺寸13.2 mm′8.8 mm,鏡頭焦距10.4 mm。數據采集選擇晴朗無云的天氣,采集時間10:00~14:00,飛行高度50 m,圖像縱向重疊度60%~80%。數碼相機曝光參數在保證定標白布不過曝的條件下設置為手動曝光,并根據實際光照條件設定光圈和快門值,白平衡設定為標準模式。試驗期間,總共在試驗小區飛行采集數據8次,分別為2016年5月14日、6月5日、6月28日、7月17日、8月6日、8月31日、10月2日、12月4日。數據采集時,無人機按照設定好的航線和參數自動巡航并記錄數據。受機載GPS定位誤差的影響,飛行時航線可能發生輕微偏移從而增加飛行所需的航帶數,因此每次采集的影像數有所不同。各次數據采集的影像數和對應的糖料蔗生育期如表1。

表1 遙感數據采集日期及對應的糖料蔗生育期
注:5月14日拍攝的數據為試驗區裸土數據,用于重建試驗區地形。
Note: Data of 14-May was bare soil data, and it was used for building the terrain of the experimental area.
1.4 地面控制點
由于試驗區地勢高低起伏,采用無控制點或較稀疏的控制點不能保證CSMs的校準精度。本試驗設置42個地面控制點(ground control points,GCPs),地面控制點由0.3 m×0.3 m的木板和埋于地下的木樁組成,各控制點均勻分布于各試驗小區過道交叉口,木板中心用白色油漆標記,具體布局見圖 1。假定基準點后,采用水準儀(G3, 頂通公司生產)和水準尺測量各地面控制點的相對高程,高程閉合差小于1 cm。
1.5 數據處理
1.5.1 建立作物表面模型并提取株高
通過無人機航拍獲得的RGB照片計算株高主要有以下4個步驟:1)生成點云并對齊照片;2)輸入地面控制點進行幾何校正;3)重建高度并輸出CSMs;4)柵格計算輸出株高。步驟1)~3)于軟件Agisoft PhotoScan Professional 12.0中完成,步驟4)于軟件Eris Arcmap 10.3中完成,具體步驟如圖2所示。

圖2 基于CSMs提取株高的主要步驟
如圖3a所示,第1次飛行(5月14日)采集的數碼影像用于建立試驗區地形的數字高程模型(digital elevation model,DEM)。在建立CSMs的過程中(步驟1)~4)),如果正射校正后的CSMs在控制點處的高程與實測控制點的高程偏差較大,則需要重新調整參數并重新定位控制點在每幅影像上的投影點后再進行建模,使控制點處CSMs與實測高程最大偏差小于10 cm,達到精度后方可輸出CSMs(圖3b)。步驟4)中,用各個生育期糖料蔗CSMs的柵格影像減去試驗區DEM的柵格影像后得到標準化后的CSMs(圖3c),并根據小區范圍繪制矩形感興趣區域(area of interest,AOI)。繪制AOI時,每條邊與小區邊緣預留1 m以排除邊界的干擾。最后通過對標準化后的CSMs分區統計即可得到各個小區糖料蔗的株高。

圖3 作物表面模型的標準化(以7月17日為例)
為討論無控制點條件下對CSMs提取株高精度的影響,本文還通過地面選點插值的方法建立試驗區地形的DEM并提取株高。此方法輸出CSMs時略去上述步驟 2)~3),不進行正射校正直接輸出CSMs。計算步驟4)時,使用Eris Arcmap 10.3在輸出的CSMs中選擇足夠數量的裸地像元點(平行于試驗小區過道,間隔約4 m選擇一個點),對選取的點賦值后采用反距離加權插值法得到試驗區的地形,再通過柵格計算得到株高。
1.5.2 計算可見光植被指數
RGB數碼相機由于成本低、分辨率高、性價比高等優點,在低空遙感平臺中得到廣泛使用。由其采集的數碼影像中RGB的DN值,本質上是紅、綠、藍3個寬波段(中心波長約為700.0、546.1和435.8 nm)反射光強的量化表達[32]。有關學者基于可見光波段的光譜反射率,提出許多可見光植被指數。Tucker[33]發現綠紅植被指數(green red vegetation index,GRVI)與藍色格蘭馬草的葉片水分含量、干生物量、葉綠素有顯著的相關關系;Kawashima等[34]使用歸一化紅光強度(normalized redness intensity,NRI)和歸一化綠光強度(normalized greenness intensity,NGI)建立了小麥葉綠素估算模型;Louhaichi等[35]最初使用綠葉植被指數(green leaf index,GLI)估算小麥冠層覆蓋度,Hunt等[36]發現GLI能較好地估算葉片葉綠素含量;Gitelson等[2]使用可見光大氣阻抗植被指數(atmospherically resistant vegetation index,ARVI)成功估算了抽穗期之前玉米的LAI;Bendig等[25]證明了修正的綠紅植被指數(modified green red vegetation index,MGRVI)能較好地估測大麥的生物量。本文選取6種可見光植被指數(表 2),使用Arcmap軟件提取試驗小區作物冠層區域RGB正射影像和定標白布影像紅、綠、藍各通道的DN平均值,轉換為相對反射率后于MATLAB R2014a中進行計算。

表2 文中使用的可見光植被指數的公式及來源
注:R, R, R分別代表紅、綠、藍波段的相對反射率。
Note:R, Rand Rwere relative reflectance in red wavelength, green wavelength and blue wavelength, respectively.
1.6 數據分析方法
本文基于無人機搭載的高清數碼相機獲取的RGB影像數據,通過從CSMs中提取株高并計算6種常見的可見光植被指數,并與實測株高一起與糖料蔗LAI作相關分析,采用回歸的方法挑選出預測效果最好的參數。本文采用決定系數2、均方根誤差(root mean square error,RMSE)和平均相對誤差(mean relative error,MRE)來評估預測模型的精度。2越大說明模型擬合越好,RMSE和MRE越小說明模型的精度越高。
2.1 基于CSMs提取株高的精度分析
試驗期間,總共在試驗小區飛行采集數據8次(2016年5月14日至同年12月4日),數據采集涵蓋了糖料蔗的整個生育期。雖然CSMs提取的株高是作物冠層特征的一種量化表達,但其與株高地面觀測值存在一定的偏差(圖4e),因此可建立觀測株高和CSMs提取的株高的線性回歸模型,從而利用CSMs提取的株高對真實株高進行估測(圖4a~4d)。

圖4 由CSMs提取的株高估算實際株高
為了比較有無地面控制點條件下CSMs提取株高對實際株高的估測精度,在2種條件下分別隨機選擇所有樣本的70%作為校正集,30%作為驗證集,使用校正集建立最小二乘線性回歸模型用于預測驗證集的實際株高(圖4a~4d)。由于試驗區處于丘陵地區,無控制點條件下采用地面插值的方法直接從CSMs中提取株高建立的模型預測誤差較大(2=0.904 3,RMSE=0.337 3),如圖4a、4b。這是因為地面插值所選的裸地像元僅局限于小區外的過道部分,對小區內地面高程代表性差,不能很好地還原整個試驗區的地形狀況。此外,地面選點插值主觀性強、工作量大,且作物的橫向生長及過道雜草加大了選點難度和模型誤差。
相比之下,有控制點條件下從CSMs中提取株高建立的模型對實際株高有較強的預測能力,預測值與實測值有較好的擬合效果(2=0.961 2,RMSE=0.215 2),如圖4c、4d。所有樣本中,CSMs提取的株高與實測株高的決定系數2=0.961 0,模型高度擬合(<0.01)。有控制點條件下CSMs提取的株高對實際株高有更高的估測精度,下文僅對此條件下CSMs提取的株高進行分析。
如圖4e所示,糖料蔗整個生育期內株高的變化范圍為0~4 m,從分蘗期開始到伸長期末株高快速伸長,成熟期伸長停止。由于成熟期受自然災害的影響,試驗區平均株高較伸長期末有所降低。比較觀測株高與作物表面模型CSMs獲取的株高發現,CSMs提取的株高普遍要比實測株高略低,這是由于拍攝到糖料蔗的冠層并不僅由第一片完全展開葉構成,其包含了較低葉片或者裸土的混合像元。因此生成的CSMs實際上是混合像元的綜合高度[31]。
2.2 基于株高和可見光植被指數的LAI估算模型
對比糖料蔗個各生育期下實測株高和實測LAI的變化趨勢,如圖 5,可以看出伸長末期之前的糖料蔗株高和LAI有明顯的相關關系和相同的變化趨勢。但是由于糖料蔗在伸長末期部分葉片開始衰老枯黃,使得LAI開始呈現下降趨勢,而株高卻沒有發生明顯下降,且葉片的枯萎會對可見光植被指數造成一定的影響。

圖5 實測株高與LAI的變化趨勢
在使用可見光植被指數和株高估算LAI的回歸模型中,把數據樣本分成全生育期(5月14日至12月4日,樣本數=420)和伸長末期之前(5月14日至8月31日,樣本數=300)兩部分,隨機選擇所有樣本的70%作為校正集,30%作為驗證集,分別計算模型的決定系數2和均方根誤差RMSE(表3)。結果顯示各可見光植被指數與LAI有明顯指數函數關系,株高與LAI則為線性關系。
如表3所示,以全生育期樣本進行建模時,各可見光植被指數中除NGI模型預測精度較低外,其余模型預測效果比較接近。其中NRI對LAI具有最高的建模精度(2=0.670 7,RMSE=0.644 9)和最優的預測效果(2=0.668 4,RMSE=0.636 0,MRE=0.187 5);其次,ARVI也能較好地預測LAI(2=0.656 2,RMSE=0.645 1,MRE=0.194 9),而此時期內2種株高和NGI對LAI的預測效果并不理想,驗證集2僅為0.50~0.57,RMSE和MRE分別達到了0.72~0.78、0.25~0.28。這是由于伸長末期后葉片的枯萎不僅造成LAI的下降,枯葉還出現在糖料蔗冠層影像中,增大了小區綠通道的DN值的噪音,因此株高和NGI模型預測效果較差。相比之下,數碼相機的紅通道中心波長(約700 nm)位于葉綠素強吸收帶(660 nm~680 nm)之后的紅邊區,使得此波段對高葉綠素和低葉綠素含量都具有較好的敏感性[37-38]。紅通道的DN值在整個生育期內先隨葉綠素的增加而下降,葉片衰老后再隨葉綠素的減少逐漸上升,枯葉對其影響較小,因此NRI模型預測效果也較好[24]。

表3 各可見光植被指數和株高與LAI的回歸分析
注:為葉面積指數,為樣本數。
Note:was leaf area index, andwas number of samples.
以伸長末期以前的樣本進行建模時,由于消除了葉片枯萎的影響,各模型的預測能力都有不同程度的提高,其中株高模型提高最大。各模型中,CSMs提取的株高建立的模型預測效果最佳(2=0.904 4,RMSE=0.366 2,MRE=0.124 3),其次為觀測株高(2=0.901 0,RMSE=0.370 7,MRE=0.124 3)。各可見光植被指數中除NRI和NGI預測精度略低外,其余模型預測效果比較接近,其中GRVI精度最高(2=0.779 0,RMSE=0.556 1,MRE=0.168 0)。
綜上分析,參數NRI、ARVI、GRVI和CSMs提取的株高對糖料蔗LAI有較好的預測潛力。結果顯示,在受伸長末期糖料蔗葉片開始枯萎的影響下,各模型對全生育期LAI的預測結果均低于伸長末期之前的結果,其中CSMs株高模型預測結果不穩定,RMSE和MRE分別高達0.769 9和0.272 9,因此CSMs株高并不適合預測伸長末期之后的LAI。相比之下,NRI、ARVI和GRVI模型對預測全生育期的LAI有較好的能力。但是當LAI較高時,NRI、ARVI和GRVI發生了不同程度的飽和現象,使得預測值相對誤差較大。相比之下,CSMs株高在預測伸長末期以前LAI時不存在飽和的問題,并且此時段內NRI、ARVI和GRVI驗證模型的2、RMSE和MRE分別在0.75~0.78、0.55~0.59和0.167~0.169之間,而CSMs株高模型2達到了0.904 4,RMSE和MRE降至0.366 2和0.124 3??梢奀SMs株高在預測伸長末期之前的LAI時無論是在模型擬合度或是預測精度方面都比可見光植被指數具有明顯的優勢。
通過遙感快速大面積估測作物LAI對于現代農業精細化管理意義重大。但是,以往的研究多基于作物反射光譜來估測LAI。本研究基于無人機搭載高清數碼相機構成的低空遙感平臺可以高效、便捷、及時地獲取到作物表面模型CSMs,從中提取的株高對糖料蔗伸長末期前的LAI的預測效果優于文中所選的各可見光植被指數。
然而,由于不同作物的生長形態和冠層結構存在較大差別,不同作物基于株高的LAI估測模型通用性較差。Wang等[39]發現闊葉林、針葉林等不同植被類型之間株高與LAI的回歸模型有較大差別。Luo等[28]就此問題指出在用株高估測LAI時,應根據具體植被類型選擇模型。因此,建立通用性更高的模型是未來的研究方向。雖然可見光植被指數對LAI的估測存在飽和等問題,但對全生育期的LAI的估測仍有較大潛力。未來的研究中,可以使用CSMs提取的株高和可見光植被指數建立多元回歸模型對LAI進行預測,同時進行多種試驗條件和品種下的研究,尋找通用性更強的模型。再者,孫濤等[40]指出進行查找表變換校正后的DN值更能代表入射光輻射量,因此可以嘗試使用校正后的DN來計算可見光植被指數并引入到模型中。由于人工對CSMs進行校準及提取株高步驟繁雜,可以基于模式識別嘗試開發智能算法進行數據處理,為未來的自動化精準農業管理提供參考。
1)基于CSMs(crop surface models)的株高預測模型在控制點條件下有更高的精度,驗證集株高預測值與實測值高度擬合(2=0.961 2,RMSE=0.215 2),說明控制點條件下本文估測株高的方法精度較高。且無人機遙感測量成本低、快捷,有向大尺度推廣的潛力。
2)伸長末期之前各可見光植被指數的LAI估測模型在高LAI時存在不同程度的飽和現象,而CSMs(crop surface models)株高估測模型無飽和問題,且預測效果最好(2=0.904 4,RMSE=0.366 2,MRE=0.124 3)。受伸長末期后葉片枯萎的影響,各模型對全生育期的LAI預測效果稍差。考慮到苗期至伸長末期已經涵蓋了糖料蔗關鍵生長階段,故利用CSMs株高來估算糖料蔗關鍵生育期LAI是可行的。
3)CSMs株高對LAI的預測效果優于實測株高,這是由于糖料蔗復雜的冠層結構使得株高地面測量主觀性強,而且基于點的地面測量不能較好反映作物冠層的實際情況。相比之下,CSMs提取的株高更加客觀,測量范圍也覆蓋了整個冠層,使得CSMs株高預測模型有更好的預測效果和應用價值。
[1] 李純佳,徐超華,覃偉,等. 甘蔗株高相關性狀數量研究[J]. 中國糖料,2015,37(3):1-3. Li Chunjia, Xu Chaohua, Qin Wei, et al. A quantitative study on plant height relative traits in sugarcane[J]. Sugar Crops of China, 2015, 37(3): 1-3. (in Chinese with English abstract)
[2] Gitelson A A, Vi?a A, Arkebauer T J, et al. Remote estimationof leaf area index and green leaf biomass in maize canopies[J]. Geophysical Research Letters, 2003, 30(5): 1248-1260.
[3] McWilliam A L C, Roberts J M, Cabral O M R. Leaf area index and above-ground biomass of terra firme rain forest and adjacent clearings in Amazonia[J]. Functional Ecology, 1993, 7(3): 310-317.
[4] Fassnacht K S, Gower S T, MacKenzie M D, et al. Estimating the leaf area index of north central wisconsin forests using the landsat thematic mapper[J]. Remote Sens. Environ, 1997, 61(2): 229-245.
[5] Seller P J, Mintz Y. A simple biosphere model (SiB) for use within general circulation models[J]. Joural of the Atmospheric Sciences, 1986, 43(6): 505-531.
[6] Bonan G B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests[J]. Remote Sensing of Environment, 1993, 43(3): 303-314.
[7] Breda N J J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies[J]. Journal of Experimental Botany, 2003, 54(392): 2403-2417.
[8] Welles J M, Cohen S. Canopy structure measurement by gap fraction analysis using commercial instrumentation[J]. Journal of Experimental Botany, 1996, 47(9): 1335-1342.
[9] 錢永蘭,楊邦杰,雷廷武. 數據融合及其在農情遙感監測中的應用與展望[J]. 農業工程學報,2004,20(4);286-290. Qian Yonglan, Yang Bangjie, Lei Tingwu. Data fusion and its application prospect in agricultural condition monitoring using remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(4): 286-290. (in Chinese with English abstract)
[10] 許文波,張國平,范錦龍,等. 利用MODIS遙感數據監測冬小麥種植面積[J]. 農業工程學報,2007,23(12):144-149.Xu Wenbo, Zhang Guoping, Fan Jinlong, et al. Remote sensing monitoring of winter wheat areas using MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(12): 144-149. (in Chinese with English abstract)
[11] Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using landsat TM images[J]. Remote Sensing of Environment, 1996, 55(2): 153-162.
[12] Colombo R. Retrieval of leaf area index in different vegetation types using high resolution satellite data[J]. Remote Sensing of Environment, 2003, 86(1): 120-131.
[13] Wu C, Han X, Niu Z, et al. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation[J]. International Journal of Remote Sensing, 2010, 31(4): 1079-1086.
[14] Zhang C, Kovacs J M. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision Agriculture, 2012, 13(6): 693-712.
[15] 廖欽洪. 作物長勢參數的垂直分布反演及遙感監測研究[D]. 杭州:浙江大學,2014. Liao Qinhong. Monitoring and Estimating the Vertical Distribution of Crop Growth Parameters Based on Remote Sensing Data[D]. Hanghzhou: Zhejiang University, 2014. (in Chinese with English abstract)
[16] 陳雯,武威,孫成明,等. 無人機遙感在作物監測中的應用與展望[J]. 上海農業學報,2016,32(2):138-143. Chen Wen, Wu Wei, Shun Chengming, et al. Application and prospect of UAV remote sensing in crop monitoring[J]. Acta Agricultural Shanghai, 2016, 32(2): 138-143. (in Chinese with English abstract)
[17] 王利民,劉佳,楊玲波,等. 基于無人機影像的農情遙感監測應用[J]. 農業工程學報,2013,29(18):136-145. Wang Limin, Liu Jia, Yang Lingbo, et al. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(18): 136-145. (in Chinese with English abstract)
[18] 高林,楊貴軍,王寶山,等. 基于無人機遙感影像的大豆葉面積指數反演研究[J]. 中國生態農業學報,2015,23(7):868-876. Gao Lin, Yang Guijun, Wang Baoshan, et al. Soybean leaf area index retrieval with UAV (unmanned aerial vehicle) remote sensing imagery[J]. Chinese Journal of Eco- Agriculture, 2015, 23(7): 868-876. (in Chinese with English abstract)
[19] Cilia C, Panigada C, Rossini M, et al. Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery[J]. Remote Sensing, 2014, 6(7): 6549-6565.
[20] Primicerio J, Di Gennaro S F, Fiorillo E, et al. A flexible unmanned aerial vehicle for precision agriculture[J]. Precision Agriculture, 2012, 13(4): 517-523.
[21] 高林,楊貴軍,于海洋,等. 基于無人機高光譜遙感的冬小麥葉面積指數反演[J]. 農業工程學報,2016,32(22):113-120. Gao Lin, Yang Guijun, Yu Haiyang, et al. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 113-120. (in Chinese with English abstract)
[22] 汪小欽,王苗苗,王紹強,等. 基于可見光波段無人機遙感的植被信息提取[J]. 農業工程學報,2015,31(5):152-157. Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 152-157. (in Chinese with English abstract)
[23] Hunt Jr E R, Cavigelli M, Daughtry C S T, et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture, 2005, 6(4): 359-378.
[24] 高林,楊貴軍,李紅軍,等. 基于無人機數碼影像的冬小麥葉面積指數探測研究[J]. 中國生態農業學報,2016,24(9):1254-1264. Gao Lin, Yang Guijun, Li Hongjun, et al. Winter wheat LAI estimation based on unmanned aerial vehicle RGB- imaging[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1254-1264. (in Chinese with English abstract)
[25] Bendig J, Yu K, Aasen H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39(1): 79-87.
[26] Verhoeven G. Taking computer vision aloft-Archaeological three-dimensional reconstructionsfrom aerial photographs with photoscan[J]. Archaeol Prospect, 2011, 18(1): 67-73.
[27] Tilly N, Aasen H, Bareth G. Fusion of plant height and vegetation indices for the estimation of barley biomass[J]. Remote Sensing, 2015, 7(9): 11449-11480.
[28] Luo S, Wang C, Pan F, et al. Estimation of wetland vegetation height and leaf area index using airborne laser scanning data[J]. Ecological Indicators, 2015, 48(1): 550-559.
[29] Zarco-Tejada P J, Diaz-Varela R, Angileri V, et al. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods[J]. European Journal of Agronomy, 2014, 55(1): 89-99.
[30] Bendig J. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability[J]. Photogramm Fernerkund Geoinf, 2013, 6(6): 551-562.
[31] Bendig J, Bolten A, Bennertz S, et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging[J]. Remote Sensing, 2014, 6(11): 10395-10412.
[32] 王方永,王克如,李少昆,等. 應用兩種近地可見光成像傳感器估測棉花冠層葉片氮素狀況[J]. 作物學報,2011,37(6);1039-1048. Wang Fangyong, Wang Keru, Li Shaokun, et al. Estimation of canopy leaf nitrogen status using imaging spectrometer and digital camera in cotton[J]. Acta Agronomica Sinica, 2011, 37(6): 1039-1048. (in Chinese with English abstract)
[33] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150.
[34] Kawashima S, Nakatani M. An algorithm for estimating chlorophyll content in leaves using a video camera[J]. Annals of Botany,1998, 81(1): 49-54.
[35] Louhaichi M, Borman M. Spatially located platform and aerial photography for documentation of grazing impacts on wheat[J]. Geocarto International, 2001, 16(1): 65-70.
[36] Hunt E R, Doraiswamy P C, McMurtrey J E, et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21(1): 103-112.
[37] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
[38] Vesali F, Omid M, Kaleita A, et al. Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging[J]. Computers and Electronics in Agriculture, 2015, 116(3): 211-220.
[39] Wang Y, Wang D, Zhang G, et al. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method[J]. Field Crops Research, 2013, 149(149): 33-39.
[40] 孫濤,劉振波,葛云健,等. 基于數碼相片Gamma校正的水稻葉面積指數估算[J]. 生態學報,2014,34(13): 3548-3557. Sun Tao, Liu Zhenbo, Ge Yunjian, et al. Estimation of paddy rice leaf area index based on photo gamma correction[J]. Acta Ecologica Sinica, 2014, 34(13): 3548-3557. (in Chinese with English abstract)
Estimation of leaf area index of sugarcane using crop surface model based on UAV image
Yang Qi1, Ye Hao1, Huang Kai2, Zha Yuanyuan1, Shi Liangsheng1※
(1.430072,; 2.530023,)
The red-green-blue (RGB) digital camera on unmanned aerial vehicle (UAV) with the relatively low cost and near real-time image acquisition renders a remote sensing platform, which is an ideal tool for crop monitoring in precision agriculture. Some successful applications have been made in biomass and yield estimation. However, retrieval of leaf area index (LAI) using plant height information extracted by crop surface models (CSMs) has been paid very limited attention to. Therefore, the objective of this study was to demonstrate the feasibility of estimating LAI with CSMs-based plant height. The study was conducted in warm and wet southern China where the sugarcane was planted widely. In this study, we acquired RGB imaging data of sugarcane in whole growing stage (8 flights) by this platform. Afterward, 42 ground control points (GCPs)were evenly distributed across the field due to the rugged terrain of the experimental area. The CSMs were built with the GCPs data and the UAV-based RGB image with very high resolution using the structure from motion (SfM) algorithm, and then the plant height information derived from CSMs was applied to estimate the LAI of sugarcane. The estimated LAI values were validated using the ground measurement data, which were collected simultaneously with the image acquisition. To assess the accuracy of plant height extracted from the CSMs without geo-referencing by GCPs data, we also constructed the ground elevation model by inverse distance weighted (IDW) interpolation to obtain plant height. In addition, we applied 6 visible band vegetation indices including green-red vegetation index (GRVI), normalized redness intensity (NRI), normalized greenness intensity (NGI), green leaf index (GLI), atmospherically resistant vegetation index (ARVI), and modified green-red vegetation index (MGRVI) from RGB image to predict the LAI, respectively. The performance of prediction models based on 6 vegetation indices was assessed by comparing with that based on plant height. The predicted plant heights based on GCPs geo-referenced CSMs matched well with the observations in the validation set, withthe2value of 0.961 2 and the root mean square error (RMSE) of 0.215 2 at the 0.01 significance level. This result demonstrated that the UAV-based CSMs with geo-referencing by GCPs were more effective in monitoring the characteristics of sugarcane canopy over rugged terrain. In all the selected visible band vegetation indices, GRVI had the decent agreement with LAI prior to late elongation stage, withthe2value of 0.779 0, the RMSE value of 0.556 1, andthe mean relative error (MRE) of 0.168 0 in the validation set. In contrast, the plant height models showed a better performance than the visible band VIsover the same period, and the best estimate for LAI was obtained from CSMs-based plant height (2=0.904 4, RMSE=0.366 2, and MRE=0.124 3). Unfortunately, due to that leaves turned to be withering since late elongation stage, all models in this study had relatively poor performance in estimating the LAI in the whole growing stage. NRI performed the best for the LAI estimation in the whole growing stage (2=0.668 4, RMSE=0.636 0, and MRE=0.187 5), while its effect was poorer compared with the result before late elongation stage. Hence, it was unsuitable for LAI estimation from visible band VIs and plant height after late elongation stage. Furthermore, all above visible band VIs in this study were affected by the saturation phenomenon with varying degrees at high LAI levels. Conversely, the CSMs-based plant height model, which showed a linear trend without saturation at high LAI, proved to be the best predictor before late elongation stage. Because the key growing stage covered the period from seedling stage to late elongation stage, and the plant height models overcame the saturation limits of visible band VIs, it was better to estimate LAI with plant height. The results of this study indicate that using CSMs-based plant height to retrieve LAI of sugarcane in the important growth period is feasible. Moreover, since the excellent fitting of CSMs-based plant height to the ground observations, this technology is a powerful tool to obtain crop canopy features accurately and rapidly and provides a new approach to the crop condition monitoring in large areas.
remote sensing; unmanned aerial vehicle; crops; crop surface model; sugarcane; red-green-blue imaging; plant height; leaf area index
10.11975/j.issn.1002-6819.2017.08.014
S566.1; TP79
A
1002-6819(2017)-08-0104-08
2017-03-07
2017-05-02
高等學校全國優秀博士學位論文作者專項資金(201248);廣西水利廳科技項目(201615)
楊 琦,男,云南蒙自人,主要研究方向為基于無人機低空遙感的農情監測。武漢 武漢大學水資源與水電工程科學國家重點實驗室,430072。 Email:yang_qi@whu.edu.cn
史良勝,男,安徽池州人,教授,博士生導師,博士,主要研究方向為地下水和溶質運移、基于低空遙感的精準農業。武漢 武漢大學水資源與水電工程科學國家重點實驗室,430072。Email:liangshs@ whu.edu.cn
楊 琦,葉 豪,黃 凱,查元源,史良勝.利用無人機影像構建作物表面模型估測甘蔗LAI[J]. 農業工程學報,2017,33(8):104-111. doi:10.11975/j.issn.1002-6819.2017.08.014 http://www.tcsae.org
Yang Qi, Ye Hao, Huang Kai, Zha Yuanyuan, Shi Liangsheng.Estimation of leaf area index of sugarcane using crop surface model based on UAV image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 104-111. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.014 http://www.tcsae.org